Role of the CMS electromagnetic calorimeter in the measurement of the Higgs boson properties

Emanuele Di Marco^(CERN & INFN Roma1) on behalf of CMS Collaboration

Higgs Couplings 2016, SLAC, 9-12 Nov. 2016

CMS Electromagnetic Calorimeter

ECAL role in physics analysis

Search and measurements of narrow resonances with photons and electrons:

- $H \rightarrow \gamma \gamma$: high energy resolution, position measurement to achieve high S/B
- $H \rightarrow ZZ \rightarrow 2e2\mu$, 4e: energy reconstruction for a wide range of E_T for electron identification
 - and precise measurement of the Higgs boson properties: e.g. *mass*, couplings, J^{CP}...
- high mass $X \rightarrow \gamma \gamma$ (EXO-16-027), Z' \rightarrow ee (EXO-16-031): high resolution and energy linearity

Test Beam: Perfect calibration, no B field, no material upstream, no irradiation – energy resolution on 3x3 EB crystals:

$$\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E}} \oplus \frac{0.128}{E(GeV)} \oplus 0.3\%$$

Suniformity and stability required in situ < 0.5%

Run I: in barrel, 1% energy resolution achieved for unconverted photons

SLAC, Nov. 9-12

Pulse reconstruction

With RunII LHC running with 25ns bunch-spacing, need a pulse reconstruction resistant to out-of-time (OOT) pile-up: **multifit algorithm**:

Pulse shape is modeled as a sum of one in-time pulse plus OOT pulses

- Up to 9 OOT pulses (one per time sample)
- Minimize χ^2 distribution for best description of the in-time amplitude
- Pulse shapes (binned templates) extracted periodically from LHC isolated bunches
- Baseline and electronic noise periodically measured from dedicated runs and used in the covariance matrix
- Minimisation using non-negative least-squares: fast enough to be used both offline and in the highlevel trigger

SLAC, Nov. 9-12

Response monitoring

Sources of response variations under irradiation:

- crystal transparency (time dependent)
- VPT conditioning in the endcaps

Response **monitored with a laser system** injecting light in every ECAL crystal

PbWO₄ crystals partially recover during periods with no exposure

- 1 calibration point / channel / 40min

CERN

 \Rightarrow precision physics

Events / 0.5 GeV

- Outer endcap: jet physics
- Steady recovery during shutdowns and inter-fills
- In the regions close to beam pipe, not fully recovered

Validation of monitoring

Response stability after corrections validated with physics signals:

- π^0 invariant mass
- E/p relative scale of W and Z electrons

CERN

Electrons E/p history in barrel in 2015

- <signal loss> ~ 6%
- RMS after corrections: ~0.14%
- similar to Runl

π^0 mass history in barrel in 1 fill

- <signal loss> ~ 1%

CMS preliminary 2016

- RMS after corrections: ~0.07%
- very fast monitoring: 1 point / 8 minutes

7

Energy intercalibration (IC)

Several methods used to equalize the response of each single crystal to the deposited energy. Same methods used as in Run I

IOn _{method})	time needed	Run I precision
φ-symmetry	few days	1-3% in EB 3-5% in EE
π⁰/η →γγ	1 month	0.5% in EB 3% in EE (η <2)
electron E/p	20 fb ⁻¹	0.5% in EB 2% in EE
Z→ee mass	20 fb ⁻¹	equalise the scale vs η in EE

ϕ -symmetry:

- In 2015 used to transfer 2012 calibrations
- in 2016 being used for time evolution of IC as in Run I Description
- systematically limited

E/p precision:

gy flux around the rings (constant n) in 2015, especially for $|\eta| > 1$

d be_uniformmations freests if publishing ted by Run T days uniformity

With full Run II sample, expected similar precision as in Run I

CERN

Run I Precision (20 fb⁻¹)

Barrel: <3% Endcap: < 10%

Clustering and corrections

Higgs Couplings 2016

120

130

140

 $m_{\gamma\gamma}$ (GeV)

0

SLAC, Nov. 9-12

120

130

140

 $m_{\gamma\gamma}$ (GeV)

0

CÉRN

Cluster energy in data

Reconstructed Z mass in data with different levels of energy reconstruction and corrections

- In EB, long tail to lower values of the E_{5x5} due to the high fraction of showering electrons in the high-material region at $|\eta| > 1$
- in EE, the energy scale is improved by adding the preshower energy to the crystals energy

barrel

endcap

CERN

I N |

Energy resolution

 $R_9 = E_{3x3}/E_{SC}$ is an effective conversion tagging variable (R>0.94 used to classify majority of unconverted photons / low-brem electrons) $CMS Preliminary = 12.9 \text{ fb}^{-1} (13 \text{ TeV})$

- estimated with fit to $Z \rightarrow ee$ with BW convolved with a Crystal-ball to match resolution observed in data

single e/γ resolution estimate

Per-electron or per-photon resolution used to build a per-event mass resolution (σ_m/m), utilised to make optimal use of the highest resolution events:

- $H \rightarrow \gamma \gamma$: used to classify events in several "untagged" categories for $m_{\gamma\gamma}$ fit
- $H \rightarrow 4l$: per-event mass resolution used as a third variable in the fit for mass measurement
 - Validated in data with fits to $Z \rightarrow ee$ by comparing the predicted σ_{m21}/m_{21}

ECAL systematics on SM Higgs

Possible sources of non perfect knowledge of the energy scale and resolution (after Run I, *re-estimated for ICHEP 2016*):

- Residual non-linearity in scale (mostly for $H \rightarrow \gamma \gamma$; in $H \rightarrow 41$ mitigated by E-track momentum combination for the electron energy): [0.1 0.2]%
 - extrapolation from E measured at Z peak (90 GeV) to m_H (125 GeV)
- Electron/photon differences in the simulation (residual data wrt MC): [0.15 0.5]%
- material distribution upstream ECAL: 0.17%
 - improved description at beginning of Run II
- longitudinal light-yield non-uniformity: 0.07%
- Geant4 (shower simulation): 0.05%
- Shower shape modelling: 0.06%

SLAC, Nov. 9-12

Measurement of high energy e/γ

Rafael Teixeira de Lima (NEU) - CALOR 2016, Daegu - South Korea

Conclusions

- Continuous developments and understandings of the detector details:
 - New amplitude reconstruction algorithm in place to cope with \approx 40 pileup interaction
 - ready for even higher values expected in 2017
 - energy measurement, calibrated with the 2.5 fb⁻¹ of 2015 data, is as good as in Run I in the most precise region
- The CMS ECAL has played a crucial role in the re-assessment of the Higgs boson and its measurements with Run II data
 - > 5 σ signal in each of the two high-resolution channels, $H \rightarrow \gamma \gamma$ and $H \rightarrow 41$
 - re-calibration with 2016 data ongoing. Target is m_H measurement with full Run II dataset
- It has been the leading ingredient of the searches of high-mass resonances in the diphoton and di-electron resonances
- Looking forward for physics beyond SM searches and / or precise SM measurements, including the Higgs boson ones

backup

Simulation

Noise model:

- realistic noise with sample-correlations and channel-to-channel variations
- increase of the APD dark current (expected with irradiation)
- transparency variations for realistic light-yield

Material budget in front of ECAL:

- tracker material description, including in-homogeneities in ϕ of services in front of the endcaps implemented in simulation in Run 2

Longitudinal non-uniformity

- Target: adequate uniformity of longitudinal light yield
 - one face of each barrel crystal depolished
 - Simulation: rear non-uniformity of 0.15%, front part assumed uniform
 - Ionizing radiation found to induce additional NUF of 30% of its initial value (worst case scenario) at the end of Run1
 - simulation modified to account for these effects

- Result: 0.07% effect on the energy scale, anti-correlated between converted and unconverted photons

CÊRN

ECAL @ OT

Di-Photon analyses are possible with data at B=0T (0.6 fb-1 of 2015 data).

No information on track momenta:

- weakens isolation power
- more difficult to identify correct vertex

But energy spread for conversions / brem reduced

- better energy resolution, easier e/γ extrapolation
- shower shape discrimination more powerful
- need dedicated channel IC, need absolute scale re-calibration
 - especially in EE, where VPT gain changes wrt 3.8T value as a function of η

0T: no energy loss in reconstruction due to bremsstrahlung (e.g. in barrel at $|\eta|>1$ where material upstream ECAL is higher) \rightarrow better resolution

100

m_{ee} (GeV)

90

80

Energy resolution

CERN

INFN