Non-resonant Higgs boson pair production at the LHC

Olivier Bondu
on behalf of the ATLAS & CMS collaboration

CP3 - UC Louvain

2016-11-11 - Higgs Couplings 2016
Motivation (1): access the scalar potential

hh production in the Standard Model

- **Direct access** to the self-coupling λ
 - SM scalar potential structure:
 \[V(h) = \frac{m_h^2}{2} h^2 + \lambda vh^3 + \frac{\lambda}{4} h^4 \]

- **Key property measurement** of $h(125)$
- Main production at LHC: gluon fusion

<table>
<thead>
<tr>
<th>LHCHXSWG</th>
<th>\sqrt{s} (TeV)</th>
<th>$\sigma_{\text{NNLO+NNLL}}$ (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>10.16</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>33.45</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>39.56</td>
</tr>
</tbody>
</table>

$m_h = 125$ GeV

Major setback: very low production cross-section

- Strong destructive interference of the two main diagrams
- By (lack of) chance, SM is almost the most destructive case...
Motivation (2): Effective Field Theories

There is hope yet: we have some leeway...

- Self-coupling λ predicted but (loosely) constrained experimentally
 - Experimental constraints of $O(n \times 10 - 100)$
- There exists other couplings in BSM scenarios:
 - $\kappa_\lambda = \lambda/\lambda_{SM}$, $\kappa_t = y_t/y_{t_{SM}}$, c_2, c_g, $c_{2g}(1502.00539, 1410.3471, 1407.0281)$
 - There exists alternatives (1607.05330) as well as indirect ways (1607.04251)
 - Cross-section can vary sensibly: $[10^{-1}, 10^4] \times \sigma(pp \rightarrow hh)^{SM}$
 - Signal shape can be significantly different from SM
- Model builders manage to accommodate deviations of $O(1)...$ we need to do better!

O. Bondu (CP3 - UC Louvain)
Scan 5D parameter space: the clustering method

It is impractical to generate a 5D grid of signal samples

- LO generation and various theoretical arguments: most of the physics is contained in the m_{hh} spectrum
 - and somewhat in $\cos(\theta)^*$
- Extensive discussions in a MITP TH-EXP workshop last year

The cluster analysis (JHEP04(2016)126, LHCHXSWG report 4 pp 202-206)

- Exp. analyses sensibility depend on the signal shape
- Cluster regions of the parameter space with similar kinematics
- Define benchmark points (BM): representative of a cluster
- Injection of the 12 benchmarks in the CMS full-sim MC prod.

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC Higgs Couplings - 2016
Experimental signatures

Ultimate figure of merit: sensitivity

- \(hh \rightarrow b\bar{b}b\bar{b} \): \(BR = 33.3\% \), fully reconstructible, but large QCD background + combinatorics and trigger thresholds
- \(hh \rightarrow b\bar{b}\tau^{-}\tau^{+} \): \(BR = 7.27\% \), fully reconstructible, large \(t\bar{t} \) QCD backgrounds
- \(hh \rightarrow b\bar{b}WW(jj\ell\nu_\ell) \): \(BR = 7.2\% \), irreducible \(t\bar{t} \) background, \(\not{E}_T \)
- \(hh \rightarrow b\bar{b}WW(\ell\nu_\ell\bar{\nu}_\ell) \): \(BR = 1.23\% \), good triggers, irreducible \(t\bar{t} \) background, \(\not{E}_T \)
- \(hh \rightarrow b\bar{b}\gamma\gamma \): \(BR = 0.26\% \), excellent trigger thresholds and acceptance, relatively low background
- \(hh \rightarrow \gamma\gamma WW(jj\ell\nu_\ell) \): \(BR = 0.10\% \), excellent trigger thresholds, relatively low background
List of LHC HH analyses

Run I - 8 TeV

<table>
<thead>
<tr>
<th>Process</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hh \rightarrow bb\gamma\gamma)</td>
<td>20 fb⁻¹ (Phys. Rev. Lett. 114 (2015) 081802)</td>
<td>19.7 fb⁻¹ (Phys. Rev. D 94 (2016) 052012)</td>
<td>XX</td>
<td>19.7 fb⁻¹ (Phys. Rev. D 94 (2016) 052012) (, \kappa_\lambda, c_2, \kappa_t)</td>
</tr>
<tr>
<td>(hh \rightarrow bb\tau^-\tau^+)</td>
<td>20.3 fb⁻¹ (Phys. Rev. D 92 (2015) 092004)</td>
<td>18.3 fb⁻¹ CMS-PAS-HIG-15-013</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb)</td>
<td>19.5 fb⁻¹ (Eur. Phys. J. C 75 (2015) 412)</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow \gamma\gamma WW(jj, ll))</td>
<td>20.3 fb⁻¹ (Phys. Rev. D 92 (2015) 092004)</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

Run II - 13 TeV

<table>
<thead>
<tr>
<th>Process</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hh \rightarrow bb\gamma\gamma)</td>
<td>3.2 fb⁻¹ (ATLAS-CONF-2016-004)</td>
<td>2.70 fb⁻¹ (CMS-PAS-HIG-16-032)</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb\tau^-\tau^+) (ICHEP16)</td>
<td>XX</td>
<td>12.9 fb⁻¹ (CMS-PAS-HIG-16-028)</td>
<td>XX</td>
<td>12.9 fb⁻¹ (CMS-PAS-HIG-16-028) (, \kappa_\lambda, \kappa_t, BM)</td>
</tr>
<tr>
<td>(hh \rightarrow bb\tau^-\tau^+(Moriond16))</td>
<td>XX</td>
<td>2.7 fb⁻¹ (CMS-PAS-HIG-16-012)</td>
<td>XX</td>
<td>2.7 fb⁻¹ (CMS-PAS-HIG-16-012) (, \kappa_\lambda)</td>
</tr>
<tr>
<td>(hh \rightarrow bb) (ICHEP16)</td>
<td>13.3 fb⁻¹ (ATLAS-CONF-2016-049)</td>
<td>2.32 fb⁻¹ (CMS-PAS-HIG-16-026)</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb) (Moriond16)</td>
<td>3.2 fb⁻¹ (Phys. Rev. D 94 (2016) 052002)</td>
<td>2.30 fb⁻¹ (CMS-PAS-HIG-16-024)</td>
<td>XX</td>
<td>2.30 fb⁻¹ (CMS-PAS-HIG-16-024) (, \kappa_\lambda, \kappa_t, c_2, c_1, BM)</td>
</tr>
<tr>
<td>(hh \rightarrow WW(jj, ll))</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td></td>
</tr>
</tbody>
</table>

13 TeV projections

<table>
<thead>
<tr>
<th>Process</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(hh \rightarrow bb\gamma\gamma)</td>
<td>XX</td>
<td>3000 fb⁻¹ (CMS-DP-2016-064)</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb\tau^-\tau^+)</td>
<td>XX</td>
<td>3000 fb⁻¹ (CMS-DP-2016-064)</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb)</td>
<td>XX</td>
<td>3000 fb⁻¹ (CMS-DP-2016-064)</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(hh \rightarrow bb) (ICHEP16)</td>
<td>XX</td>
<td>3000 fb⁻¹ (CMS-DP-2016-064)</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

14 TeV projections

<table>
<thead>
<tr>
<th>Process</th>
<th>ATLAS</th>
<th>CMS</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tt)</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2016-023)</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(tt)</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2014-019)</td>
<td>3000 fb⁻¹ (CMS-PAS-FTR-15-002)</td>
<td>XX</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2014-019) (, \kappa_\lambda)</td>
</tr>
<tr>
<td>(tt)</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2015-046)</td>
<td>3000 fb⁻¹ (CMS-PAS-FTR-15-002)</td>
<td>XX</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2015-046) (, \kappa_\lambda)</td>
</tr>
<tr>
<td>(tt)</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2016-024)</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>(tt)</td>
<td>3000 fb⁻¹ (ATL-PHYS-PUB-2016-024)</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC
Higgs boson was discovered in 2012. Since 2014...

- **4 papers** and **1 conference note** on 8 TeV data
- **1 paper** and **8 conference notes** on 13 TeV data
- **1+6 conference notes** on HL-LHC projections at 13 and 14 TeV
- Not to mention many more results on resonant searches
 - see Souvik Das’ talk (CMS) as well as BaoJia Tong’s talk (ATLAS)

Very active area in experimental collaborations
(and growing community)

I apologize for the large tables:
not all informations are provided on public documents
for a proper apple-to-apple comparison of everything...
hh \rightarrow b\bar{b}b\bar{b} analyses (1)

Key points

- Larger BR: 33.9%
- Fully hadronic final state: HUGE QCD bkg

Analysis Strategy

- Set of multi-(b-)jets triggers
- 4 b-tagged, resolved jets
- consistent pairs with the Higgs mass
- Data-driven QCD background estimate
- tt, DY (SMHiggs) backgrounds estimated from simulation (10%)
 - yields from data in some cases
- Signal region from mh-mh plane (ellipse, X_{hh})

13 TeV HL-LHC: CMS-DP-2016-064
14 TeV HL-LHC: ATL-PHYS-PUB-2016-024

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC

Higgs Couplings - 2016 8 / 19
hh → b-bb analyses (2)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>QCD bkg.</th>
<th>misc.</th>
<th>final discriminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS 8 TeV</td>
<td>2btag CR & iter. kin. corrections</td>
<td>veto w/ (n_{\text{jets}}) and (\chi^2) trigger, bkg. unc., (\int L), min (p_T) studies</td>
<td>cut-and-count (m_{\ell\ell\ell})</td>
</tr>
<tr>
<td>ATLAS-15 13 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS-15+16 13 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL-ATLAS 14 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS-15 13 TeV</td>
<td>data-driven hemisphere mixing</td>
<td>cut on BDT(kin., angles)</td>
<td></td>
</tr>
<tr>
<td>HL-CMS 13 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sigma (\text{TeV}) \times \sigma^{\text{SM}} \times \text{BR (fb)} \]

<table>
<thead>
<tr>
<th>(\sqrt{s}) (TeV)</th>
<th>(\sigma^{\text{SM}} \times \text{BR (fb)})</th>
<th>95% CL upper limit on (\sigma) (pb) and (\sigma \times \text{BR (fb)}) obs. (exp.)</th>
<th>(\mu_{hh}) (exp.)</th>
<th>unc. on (\mu)</th>
<th>significance</th>
<th>anomalous couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3.45</td>
<td>ATLAS 0.62 202 (0.62) 210 63 (63) 36 (N/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11.3</td>
<td>ATLAS-15 3.6 1220 29 (N/A) CMS-15 11.4 3880 (10.3) 3490 343 (308) < 1(\sigma)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>11.3</td>
<td>HL-CMS (7.0) (2.5) (0.39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13.4</td>
<td>HL-ATLAS (1.5 - 5.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content in gray is not official

- Trigger, preselection, bkg estimation, signal extraction: **different strategies**
- **Most sensitive result to date (ATLAS):** important final state!

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC
hh → b\bar{b}τ$^-$τ$^+$ analyses (1)

Key points

- BR: 7.27% (all tau decays)
- Fully reconstructible final state
- $t\bar{t}$ bkg dominating for $\tau_e\tau_h, \tau_\mu\tau_h$
- QCD, DY bkg dominating for $\tau_h\tau_h$

Analysis Strategy

- Single lepton and τ triggers
- τ ID (HPS, BDT, ...) with lepton veto
- $\tau\tau$ system reco. (MMC, SVfit)
- invariant mass windows
- QCD, fake τs from data
- DY → $\tau\tau$ with embedding (for 8 TeV)
- $t\bar{t}$, others (W, t, VV, SMH) from MC

13 TeV: CMS-PAS-HIG-16-012, CMS-PAS-HIG-16-028
13 TeV HL-LHC: CMS-DP-2016-064

O. Bondu (CP3 - UC Louvain)

(Non-res) Higgs boson pairs @ LHC

Higgs Couplings - 2016
hh → b¯bτ−τ+ analyses (2)

Key differences

<table>
<thead>
<tr>
<th>analysis</th>
<th>channels</th>
<th>additional criteria</th>
<th>final discriminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS 8 TeV</td>
<td>τeτh, τμτh</td>
<td>n_b < 3, m_{T'} < 60 GeV, angular cuts</td>
<td>m_{T'}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m_W, m_h) elliptic cut</td>
<td></td>
</tr>
<tr>
<td>CMS 8 TeV</td>
<td>τhτh</td>
<td>kin. fit, ΔR(τ, τ) < 2</td>
<td></td>
</tr>
<tr>
<td>CMS-15 13 TeV</td>
<td>τeτh, τμτh, τhτh</td>
<td>2jets(0,1,2)tag cat.</td>
<td></td>
</tr>
<tr>
<td>CMS-16 13 TeV</td>
<td>τeτh, τμτh, τhτh</td>
<td>cut on angular cut</td>
<td></td>
</tr>
<tr>
<td>HL-CMS 13 TeV</td>
<td>extrapolation of 2015 analysis, upgrade scenarios studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL-ATLAS 14 TeV</td>
<td>τeτh, τμτh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL-CMS 14 TeV</td>
<td>τeτh, τμτh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benchmark number

<table>
<thead>
<tr>
<th>√S (TeV)</th>
<th>σ^{SM} × BR (fb)</th>
<th>95% CL upper limit on</th>
<th>unc. on μ</th>
<th>significance</th>
<th>anomalous couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>σ (pb) and σ × BR (fb)</td>
<td>(exp.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.74</td>
<td>ATLAS 1.6 116 (1.3)</td>
<td>(94)</td>
<td>160 (130)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMS 0.59 43 (0.94)</td>
<td>(94)</td>
<td>53 (84)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.43</td>
<td>CMS-15 8.7 632 (7.2)</td>
<td>(523)</td>
<td>260 (215)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMS-16 6.99 508 (5.78)</td>
<td>(420)</td>
<td>200 (170)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.43</td>
<td>HL-CMS (5.2 - 7.4)</td>
<td>(4.3)</td>
<td>(2.6 - 3.7)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.88</td>
<td>HL-ATLAS (2.6 - 3.7)</td>
<td>(0.28 - 0.39)</td>
<td>(0.60)</td>
<td>(κ_λ \leq 50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HL-CMS (2.6 - 3.7)</td>
<td>(0.28 - 0.39)</td>
<td>(0.60)</td>
<td>(κ_λ \leq 50)</td>
</tr>
</tbody>
</table>

Content in gray is not official

- Very good sensitivity, and **sensitive to signal shape**
- **More data**: categories, variables, bkg estimates, ... **performance will improve**
hh → bbWW(jj\ell\bar{\ell}) analysis

Key points
- **BR**: 7.2%
- **Irreducible t\bar{t} background**
- Not fully reconstructible (1 d.o.f.)

Analysis strategy
- Delphes study with upgraded CMS detector
- Large PU: **importance of combinatorics and jet tools**
- Numerous variables as input to a BDT
- Cut and count analysis

<table>
<thead>
<tr>
<th>(\sqrt{s}) (TeV)</th>
<th>(\sigma_{SM} \times BR) (fb)</th>
<th>95% CL upper limit on (\sigma) (pb) and (\sigma \times BR) (fb) obs.</th>
<th>(exp.)</th>
<th>(\mu_{hh}^{\text{obs.}}) (\mu_{hh}^{\exp.})</th>
<th>unc. on (\mu)</th>
<th>significance</th>
<th>anomalous couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2.85</td>
<td></td>
<td></td>
<td>(\frac{\sigma}{\sigma_{SM}}) if N/A</td>
<td>(5.3)</td>
<td>(2.8)</td>
<td></td>
</tr>
</tbody>
</table>

Promising sensitivity: to be pursued with data analysis (?) soon from ATLAS!
hh → bbWW(ℓν_ℓbar ℓν_ℓbar) analyses

Key points

- BR: 1.23% (h → VV → ℓνℓν leg)
- Irreducible t¯t background
- Not fully reconstructible (2 d.o.f.)

Strategy

- Kin. MVA (no m_{jj})
- 2D fit (13 TeV) – MVA-cut and count (14 TeV)
- Providing numerical limits on 1459 points of the parameter space

- Same O(sensitivity) as other final states

<table>
<thead>
<tr>
<th>√s (TeV)</th>
<th>σ^{SM} × BR (fb)</th>
<th>95% CL upper limit on σ (pb) and σ × BR (fb)</th>
<th>obs.</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.411</td>
<td>CMS-15 13.6, 166.7 (7.5) (92.8^{+0.9}_{-30.4})</td>
<td>410 (227^{+147}_{-82})</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.411</td>
<td>HL-CMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.487</td>
<td>HL-CMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expected: allowed
Observed: allowed
excluded (95% CL)

anomalous couplings

K_λ, K_μ, C_2, C_9, C_{2g}, BM

O. Bondu (CP3 - UC Louvain)
hh → bbγγ analyses (1)

Key points

- Lowe BR (0.26%)
- fully reconstructible and clean final state - low background
- Excellent sensitivity - stat. limited

Analysis strategy

- Collect data with diphoton triggers
- Select 2 photons and 2 b-jets
- Use $m_{\gamma\gamma}$ resolution
- $\gamma\gamma+$ jets , $\gamma+$ jets , multijets directly fit in data, single h from simulation
 - Account for possible background mismodeling
hh → b\bar{b}γγ analyses (2)

Key differences

<table>
<thead>
<tr>
<th>analysis</th>
<th>selection</th>
<th>tools</th>
<th>categories</th>
<th>signal extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS 8 TeV</td>
<td>(p_T > 55, 35 \text{ GeV})</td>
<td>(m_{b}) scaling</td>
<td>b-tag</td>
<td>fit (m_\gamma)</td>
</tr>
<tr>
<td>CMS 8 TeV</td>
<td>(p_T > 25 \text{ GeV})</td>
<td>b-jet regr. ;</td>
<td>(\cos \theta_{th}) cut</td>
<td>b-tag, (m_{\gamma</td>
</tr>
<tr>
<td>ATLAS-15 13 TeV</td>
<td>Similar to ATLAS 8 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS-15 13 TeV</td>
<td>b-jet regr. ; (m_{\gamma</td>
<td></td>
<td>}) cut</td>
<td></td>
</tr>
<tr>
<td>HL-CMS 13 TeV</td>
<td>Projection of CMS-15 13 TeV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>accounting high-pu ((e(\text{ID})), (e(\text{vtx}))) upgrade / aging scenarios studied</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL-ATLAS 14 TeV</td>
<td>angular cuts, (\leq 6) jets, lepton veto, (p_T^{\gamma}), (p_T^{b\bar{b}} > 110 \text{ GeV})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL-CMS 14 TeV</td>
<td>(p_T > 40 \text{ GeV},) lepton veto, (\leq 4) jets, angular cuts upgrade / aging scenarios studied</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\sqrt{s} \text{ (TeV)} \quad \sigma^{SM} \times \text{BR (fb)}\) | \(95\% \text{ CL upper limit on } \sigma \text{ (pb)} \quad \sigma \times \text{BR (fb)} \text{ obs.} \quad \text{exp.})\) | \(\frac{\text{obs.}}{\text{exp.}} \quad \text{if N/A} \quad \text{unc. on } \mu \quad \text{significance} \quad \text{anomalous couplings} \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.64 × 10^{-2}</td>
<td>2.2</td>
<td>0.71</td>
<td>3.9</td>
<td>3.04</td>
<td>7.90</td>
</tr>
<tr>
<td>13</td>
<td>8.70 × 10^{-2}</td>
<td>5.72</td>
<td>1.85</td>
<td>10.1</td>
<td>10.1</td>
<td>7.90</td>
</tr>
<tr>
<td>13</td>
<td>8.70 × 10^{-2}</td>
<td>5.72</td>
<td>0.71</td>
<td>3.9</td>
<td>3.04</td>
<td>7.90</td>
</tr>
<tr>
<td>14</td>
<td>1.03 × 10^{-2}</td>
<td>3.9</td>
<td>10.1</td>
<td>3.04</td>
<td>7.90</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Content in gray is not official

- **Very similar analyses**
- **Very good sensitivity and sensitive to signal shape**, analyses are stat. limited,
- **More on (CMS) hh → b\bar{b}γγ analyses** in Rafael Teixeira De Lima talk

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC
hh → γγWW(jjℓνℓ) analyses

Key points

- Lowest BR: 0.10%
- à la hh → b¯bbγγ: low BR, good trigger and selection eff., low bkg
- γγ continuum (Wγγ + jets) bkg.

Strategy

- h → γγ triggers
- 2 tight γ, 1 medium ℓ, 0 b-tag jet
- Fit \(m_{γγ} \) to estimate continuum bkg
- Cut on \(m_{γγ} \) and count

Stat. limited: more data coming!

<table>
<thead>
<tr>
<th>(\sqrt{s}) (TeV)</th>
<th>(σ^{SM}) × BR (fb)</th>
<th>95% CL upper limit on (σ) (pb) and (σ \times BR) (fb)</th>
<th>(\mu_{hh}) obs. (exp.)</th>
<th>unc. on (μ)</th>
<th>significance</th>
<th>anomalous couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.010</td>
<td>ATLAS 11 (11) (6.7) (6.7)</td>
<td>1150 (680)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.033</td>
<td>ATLAS-16 25.0 (25.0) (12.9) (12.9)</td>
<td>757 (390)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content in gray is not official

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC

Higgs Couplings - 2016 16 / 19
Combinations: towards the end goal

L’union fait la force

- Not all (not any?) analyses has reached yet it’s full maturity: areas for improvements in each experiment
- Yet all final states have an expected sensitivity within one order of magnitude
- The end game will be to combine them all
- Even if the target seems far away yet, we might be lucky and BSM could be around the (hh-)corner...

<table>
<thead>
<tr>
<th>√s (TeV)</th>
<th>σ^{SM} (fb)</th>
<th>95% CL upper limit on σ (pb)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>obs. (exp.)</td>
<td>μ_{hh} (exp.)</td>
<td>unc. on μ</td>
<td>significance</td>
</tr>
<tr>
<td>8</td>
<td>10.16</td>
<td>ATLAS 0.69 (0.47)</td>
<td>70 (48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>39.56</td>
<td>HL-CMS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content in gray is not official

O. Bondu (CP3 - UC Louvain) (Non-res) Higgs boson pairs @ LHC Higgs Couplings - 2016
Bonus track: what about $t\bar{t}hh$?

Key points

- $t\bar{t}hh \rightarrow b\ell\nu bjj(b\bar{b}b\bar{b})$
- low background, no loops in LO diagrams
- **Very low stat.**, combinatorics

Strategy

- Single lepton triggers, ≥ 7 jets, 1 lepton, $\geq 5-6$ b-tagged jets
- Discriminant variable: $<\eta(b_i, b_j) > \left(\frac{\sum_{jets} p_T}{\sum_{jets} E} \right)$, $H_B = \sum_{b-jets} p_T$ also studied
- Jets combinatorics via χ^2 or scalar sums
- cut and count

<table>
<thead>
<tr>
<th>\sqrt{s} (TeV)</th>
<th>σ^{SM} (fb)</th>
<th>95% CL upper limit on σ (pb)</th>
<th>$\mu_{hh}^{obs.}$ ($\mu_{hh}^{exp.}$)</th>
<th>unc. on μ</th>
<th>significance</th>
<th>anomalous couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.33</td>
<td>HL-ATLAS</td>
<td>g_{SM}</td>
<td>if N/A</td>
<td>(0.35)</td>
<td></td>
</tr>
</tbody>
</table>

Content in gray is not official

- No hope of a stand-alone discovery (/ not much contribution to total hh rate)
Conclusion

Where we are

- SM hh production is out of reach for the short term
- Experimental effort to make sure all interesting final state are considered, combination is likely the best answer
- Start **probing anomalous couplings**, BSM could be around the hh-corner

Where we are going:

- More final states!
 - ATLAS: hh, $bbWW$, $(jj\ell\ell)$
 - CMS: hh, $hh!bbZZ$

- More production modes!
 - Next stop: VBF (10% of the total production)

- 4-20 times more data: 40 fb$^{-1}$ to analyse (for the short term!)

- With more data comes improved analyses, we can do better than our own extrapolations: categorisation, data-driven bkg estimates, ...

Stay tuned! More Higgses, more fun!

O. Bondu (CP3 - UC Louvain)
Conclusion

Where we are

- **SM hh production is out of reach for the short term**
- **Experimental effort to make sure all interesting final state are considered**, combination is likely the best answer
- **Start probing anomalous couplings**, BSM could be around the hh-corner

Where we are going:

- **More final states!**
 - ATLAS: $hh \rightarrow b\bar{b}WW(jj\ell\bar{\ell})$
 - CMS: $hh \rightarrow \gamma\gamma\gamma\gamma$, $hh \rightarrow b\bar{b}ZZ$
- **More production modes!** next stop: VBF ($\approx 10\%$ of the total production)
- **4-20 times more data**: 40 fb-1 to analyse! (for the short term!)
- **With more data comes improved analyses**, we can do better than our own extrapolations: categorisation, data-driven bkg estimates,
Conclusion

Where we are

- **SM hh production is out of reach for the short term**
- **Experimental effort to make sure all interesting final state are considered**, combination is likely the best answer
- Start **probing anomalous couplings**, BSM could be around the hh-corner

Where we are going:

- **More final states!**
 - **ATLAS:** hh $\rightarrow b\bar{b}WW(jj\ell\bar{\ell})$
 - **CMS:** hh $\rightarrow \gamma\gamma\gamma\gamma$, hh $\rightarrow b\bar{b}ZZ$
- **More production modes!** next stop: VBF ($\approx 10\%$ of the total production)
- **4-20 times more data:** 40 fb-1 to analyse! (for the short term!)
- **With more data comes improved analyses,** we can do better than our own extrapolations: categorisation, data-driven bkg estimates,

Stay tuned! More Higgeses, more fun!
References

hh → b¯b b¯b

13 TeV HL-LHC: CMS-DP-2016-064

14 TeV HL-LHC: ATL-PHYS-PUB-2016-024

hh → b¯b τ− τ+

13 TeV HL-LHC: CMS-DP-2016-064

hh → b¯b WW (jjℓ̅ℓ̅)

14 TeV HL-LHC: CMS-DP-2016-064

hh → b¯b WW (ℓ̅ν̅ℓ̅ ν̅ℓ)

13 TeV: CMS-PAS-HIG-16-024

13 TeV HL-LHC: CMS-DP-2016-064

14 TeV HL-LHC: CMS-PAS-FTR-15-002

hh → b¯b γγ

13 TeV: CMS-PAS-HIG-16-032, ATLAS-CONF-2016-004

13 TeV HL-LHC: CMS-DP-2016-064

hh → γγ WW (jjℓ̅ℓ̅)

13 TeV: ATLAS-CONF-2016-071

Combinations

14 TeV HL-LHC: CMS-PAS-FTR-15-002

tthh

14 TeV HL-LHC: ATL-PHYS-PUB-2016-023