Transformation
System report

Luisa Arrabito!, Federico Stagni?

1) LUPM CNRS/IN2P3, France
2) CERN

6t DIRAC User Workshop 23rd -
25th May 2016, Montpellier

ODIRAC

THE INTERWARE

ODIRAC Plan

THE INTERWARE

What's the Transformation System?
Evolutions since last year

Future plans

O DIRAC What's the Transformation System?

A DIRAC System as usually comprising:
MySQL DB, Services, Agents, Clients, Scripts and Plugins

A system for handling “repetitive work”, i.e. many identical tasks with a
varying parameter

2 main usages:

Productions: the “same” job — i.e. the same workflow - is executed

Client for the Workload Management System
Data handling: replications, removal
Client for the Request Management System
It handles input datasets (if present)
It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs)

Use of ‘Plugins’ to group tasks input files and set tasks destinations

LHCb ‘Production System’ is built on top of it. Also CTA, ILC and Belle Il
use it for their productions

O DIRAC Transformation System architecture

Transformations Ad:i:ina, * Production Manager
Farameter defines the transformations
* TransformationAgent
InputData | [InputData | Fies “Data Files processes the transformations
Query Agent intemal catelo and creates tasks given a
Transformation Plugin
ﬁl Tranfir:tation J Fie Tasks * InputDataAgent
DB Tables queries the Catalog to obtain
! files to be ‘transformed’
- Tasks * WorkflowTaskAgent
transforms tasks into job
/\ workflows, given a
T‘Qg(”;{';;t T:;qxgztm TaskManager Plugin
e RequestTaskAgent
transforms tasks into
ﬁﬁ &"—g—ﬁ requests

ODIRAC Plugins

Transformation Plugins

Group input files of the tasks according to different criteria
Standard
Group files according to replica location
BySize
Group files until they reach a certain size (input size in Gb)
ByShare
Groups files given the share (specified in the CS) and location
For replication

Broadcast

Take files at the source SE and broadcast to a given number of locations

ODIRAC

How it works in practice (1)?

See documentation at:

http://diracgrid.org/files/docs/AdministratorGuide/Systems/Transformation/
index.html

Installation

Need to have the Transformation System installed and running. The
minimum IS:

Service: TransformationManagerHandler

Database: TransformationDB

Agents:

=1 TransformationAgent

o1 WorkflowTaskAgent

1 RequestTaskAgent

o InputDataAgent

1 TransformationCleaningAgent

O DIRAC How it works in practice (Il)?

Configuration

Add the transformation types in the Operations/[VO]/Transformations
section, e.qg.:

Transformations
DataProcessing = MCSimulation
DataProcessing += Merge
DataProcessing += Analysis

DataProcessing += DataReprocessing 2 classes of Transformations
DataManipulation = Removal }

DataManipulation += Replication

Eventually configure the WorkflowTaskAgent and the RequestTaskAgent
to treat a particular transformation type

ODIRAC Use cases examples (I)

MC Simulation

You want to generate many identical jobs with a varying parameter
(and no input files)

The varying parameter should be built from @{/0B_ID}, which
corresponds to the TaskID, and it’s used in the job workflow, e.g.:

job.setExecutable('./dirac_prod3_corsika', arguments = '@{JOB_ID}')

Create a MC transformation

from DIRAC.TransformationSystem.Client.Transformation import Transformation
from DIRAC.Interfaces.API.Job import Job
= myJob()

L S
.

t = Transformation()
t.setTransformationName("MCProd") # This must set Type
t.setTransformationGroup("Groupl"
t.setType("MCSimulation™)
t
t
t

.setDescription("MC prod example")
.setLongDescription("This is the long description of my production") #mandatory
.setBody (j.workflow.toXML())

t.addTransformation() #transformation is created here

t.setStatus("Active")

8 t.setAgentType("Automatic")

ODIRAC Use cases examples (ll)

Data analysis, i.e. process a large number of files with the same program
You want to create many identical jobs with varying input files

Create a transformation with a valid type (see slide on TS configuration), e.g.:
setType("Analysis")
Add files to the transformation using the TransformationClient
Add a list of existing files
addFilesToTransformation(transliD,infileList)

Add files which are the result of a DFC query

createTransformationinputDataQuery(transiD, {'site": 'Paranal’,'particle":
'‘proton',’analysis_prog=evndisp’})

In this way files are added as soon as they are registered in the Catalog (InputDataAgent)
They are most likely the result of another on-going transformation
Set the number of input files per job, e.q.:
setGroupSize(10)
Define how files should be grouped, e.g.:
setPlugin("Standard”)

ODIRAC Use cases examples (lll)

Data Management Transformations

Bulk data replication, i.e. replicate many files to a list of Target SEs
You want to create many identical replication requests with varying input files

Create a Replication transformation
Define the type of requests to be executed

setBody('ReplicateAndRegister"')
Set a valid type (see slide on TS configuration)

setType("Replication”)
Set the source and the target SEs for replication

setSourceSE(['CYF-STORM-Disk','DESY-ZN-Disk'])
setTargetSE(['CEA-Disk'])
setPlugin("Broadcast")

Bulk data removal (see details in documentation)

10

C DIRAC Evolutions since last year

Support for parametric jobs (in v6r15)
Improvement of job submission
TaskManager prepares and submit a bunch of jobs in one go
It's activated by Transformations/BulkSubmission flag in CS

Introduction of new TaskManager Plugins (already in v6r13)

Used to specify tasks destination
BySE
Default plugin
Set jobs destination depending on the input data location
ByJobType

It allows to implement any distributed computing model by simple configuration in the
CS

By default, all sites are allowed to run every job

Different rules for site destination can be specified in the CS for each JobType

11

ODIRAC JobByType Plugin: how it works?

Configuration
Set Operations/Transformations/DestinationPlugin = ByJobType

Define the rules for each JobType in Operation/JobTypeMapping, e.g.:

JobTypeMapping

h AutoAddedSites = LCG.CERN.ch AUtOAddedSiteS.'
AutoAaddedSites += LCG.INZP3.fr h .
AutoAddedS%tes += LCG.CNAF.it gtesa”ov“xjto NﬂWlObS
AutoaAaddeds :_Ltes :f ILCG.PIC.es €) X X
Autonddcdsites +— oo mam wk with files in their local SEs

AutoAaddedSites += LCG.SARA.N1
AutoAaddedSites += LCG.RRCKI.ru
DataReconstruction

/{ Exclude = ALL < EXCIUde:

prew — sites that will be removed
LCG.NIKHEF.nl — LCG.SARA.nl . y .
LCG.UKI-LT2—-QOMUL.uk = LCG.RAL.uk as destination sites
LCG.CPPM.fr — LCG.SARA.nl
JobType ICG.LAL.fr — Loo.cERN.ch =
LCG.LAL.fr += LCG.IN2P3.fr A” .
LCG.BariRECAS.it = LCG.CNAF.it [& ow.
LCG.CBPF.br — LCG.CERN.ch N .
N VAC .Manchester.uk = LCG.RAL.uk] S|tes a"owed to run]Obs
) 4 . .
Ny erge with input data at another
Exclude = ALL Site
Allow
¢ LCG.NIKHEF.nl = LCG.SARA.nl

¥

Here ‘Merge’ jobs having input data at LCG.SARA.nl can run both at
12 LCG.SARA.nl and LCG.NIKHEF.nl

ODIRAC JobByType Plugin: how it works?

Create your transformation
Set JobType in the job workflow, e.g.:

from DIRAC.TransformationSystem.Client.Transformation import Transformation
from DIRAC.TransformationSystem.Client.TransformationClient import TransformationClient
from DIRAC.Interfaces.API.Job import Job

job = Job()

job.setType("Merge") <— set JobType

t = Transformation()
tc = TransformationClient() set Type
t.setType("Merge") <— |
t.setDescription("EvnDisp3 example")
t.setLongDescription("EvnDisplay analysis") set Body set input data
t.setGroupSize(1)

t.setBody (job.workflow.toXML())
t.addTransformation() <€
t.setAgentType("Automatic")
transID = t.getTransformationID()
tc.addFilesToTransformation(transID['Value'], {'particle': 'gamma', 'site':'Paranal', 'analysis_prog': 'sim_telarray', 'thetaP':20.})

transformation is created here

13

O DIRAC Future plans

Already discussed last year, see RFC #21:

https://indico.cern.ch/event/372717/contributions/1793972/attachments/
741943/1017819/PrsentationTS.pdf

https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
Motivations for improvement:

Large catalog queries may be a bottleneck (experience from LHCD)
1 Proposal to make the TS fully ‘data-driven’ by implemeting ‘meta-filters’

1 Work already started

Need to support ‘chained transformations’

7 Example: in LHCb chained transformations, e.g. Re-processing -> Merging ->
Removal, are handled by a dedicated Production System

o Proposal to extend the TS to support chained transformations as basis for each
community to build its own 'Production System’

Agents in the TS work in ‘polling’ mode
1 Proposal to use a Message Queuing System complementary to polling

14

