

ECLOUD in PS2, PS+, SPS+

Miguel Furman Center for Beam Physics LBNL

CARE-HHH-APD LHC-LUMI-06 IFIC, Valencia, 16-20 October 2006

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 1

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

- 𝔼 New results for LHC (nominal case, t_b=25 ns spacing)
- Results for injector upgrades (SPS, SPS+,...)^(**)

I am grateful for many discussions with F. Zimmermann and W. Fischer.

(*) In collaboration with summer student Michael Carrié (INP Grenoble, ENSPG). (**) Very recent; not tested for numerical convergence, especially PS2 and PS+. Some cases yet to be done.

POSINST code fixes and improvements

- - —When attempting first LHC upgrade simulations (t_b =12.5 ns)
 - Severe ecloud problem
 - Intermittent problem: exceedingly fast ecloud growth with gross violation of energy conservation, even in between bunch passages
- - -I have thoroughly tested it
 - In stand-alone mode
 - Convergence tests within LHC ecloud simulations
 - For 64x64 grid, it is ~as fast as old solver with 9x7 grid
 - -New results show a more benign ecloud effect than the old ones
 - -Most of the problem was due to the too-coarse grid used earlier

 $rac{1}{5}$ I offer my embarrassed apologies

Build-up of the ecloud in an arc dipole: line charge density vs.time for 1 batch

- Other convergence tests carried out, separately and in combination
- An erratum will be submitted to PRSTAB

(*) Old results: M. Furman and V. Chaplin, PRST-AB **9**, 034403 (March 2006)

Lawrence Berkeley National Laboratory

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

LHC nominal case (contd.): ecloud heat load

•••••• : cooling capacity available for EC power deposition (FZ, LHC MAC mtg. #17 (2005))

Lawrence Berkeley National Laboratory

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

M. Furman, "ecloud in PS2, PS+, SPS+" p. 5

LHC upgrades

(from file lhcupgradeparams.pdf)

LHC, E _b =7 TeV	Nominal	Ultimate	Shorter bunch	Bigger bunch	Longer bunch
tb [ns]	25	25	12.5	25	75
Nb [1e11]	1.15	1.7	1.7	3.4	6
sigz [cm]	7.55	7.55	3.78	3.78	14.4
Longit. bunch profile	gaussian	gaussian	gaussian	gaussian	flat

Simulation conditions:

- Look only at bending dipoles at E_b=7 TeV 1.
- 2. Assume copper chamber
- 3. Primary electrons only from photoemission
 - Same photoelectric and SEY parameters as in "old case" (PRSTAB 9, 034403 (2006))
- 4. Study ecloud during only one "batch", with a few spot checks to 2 and 3 batches
- 5. Definition of a "batch"
 - For $t_{\rm b}$ =12.5 ns, 144 bunches followed by a gap, ٠ for a total of 2 µs
 - For $t_{\rm b}$ =25 ns, 72 bunches followed by a gap, for ٠ a total of 2 us
 - For $t_{\rm h}$ =75 ns, 24 bunches followed by a gap, for ٠ a total of 2 µs
- 6. For either nominal or short bunch cases, use 21 kicks per bunch. For longer bunches, use 41 kicks.

- 7. Always use the new Poisson solver with a 64x64 grid
- 8. For the long bunch case, use a generalized parabolic longitudinal shape,

NB: in this case, σ_{z} /FW=0.26 and FWHM/FW=0.9

- \mathbf{k} Significant heat load for $\delta_{max} > 1.1$
 - -Qualitatively consistent with ECLOUD results (file "LumiUpgradeparameters-and-heat-loads.pdf")
 - -What is the available cryo cooling capacity at t_b=12.5 ns?
- $rac{1}{5}$ Significant difference in overall ecloud density vs. 1- σ density

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 7

Nb

▶ Insignificant heat load unless δ_{max} exceeds ~1.7

- Qualitatively consistent with ECLOUD results (file "LumiUpgrade-parameters-andheat-loads.pdf", FZ and FR)
- 尽 Density significantly below beam neutralization level

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 8

Injector upgrade

(parameters from file psplusetcparams.pdf)

SPS	SPS, Eb=50 GeV			SPS, Eb=75 GeV			SPS, Eb=450 GeV		SPS+a, Eb=50 GeV		SPS+b, Eb=75 GeV			SPS+, Eb=1000 GeV				
tb [ns]	12.5	25	75	12.5	25	75	12.5	25	75	12.5	25	75	12.5	25	75	12.5	25	75
Nb [1e11]	1.9	3.8	6.4	1.9	3.8	6.4	1.9	3.8	6.4	1.9	3.8	6.4	1.9	3.8	6.4	1.8	3.6	6.2
sigz [cm]	14.3	23.4	23.4	12.6	20.9	20.9	12.0	12.0	12.0	14.3	23.4	23.4	12.6	20.9	20.9	12.0	12.0	12.0

Simulation conditions:

- 1. Look only at bending dipoles
- 2. Look at one batch only
- 3. Identical "batch" definitions to those on slide 6
- 4. Assume stainless steel rectangular chamber
 - E_{max} =310 eV, independent of δ_{max}
 - Assumed δ_{ma} =1.3, 1.5 and 1.7
- 5. Primary electrons only from ionization of residual gas (assumed T=300 K and P=1e-5 Torr for simulation speed up and better numerical stability)

PS	PS2, Eb	=50 GeV	PS+, Eb=75 GeV					
tb [ns]	12.5	25	75	12. 25 5		75		
Nb [1e11]	1.9	3.8	6.4	1.9	3.8	6.4		
sigz [cm]	57.3	93.5	93.5	50.5	83.5	83.5		

- 6. Bunch length divided into kicks such that, typically, Δt ~0.1 ns (but Δt ~0.3 ns for PS2 and PS+)
 - This is coarser than for the LHC by a factor ~3-5
- 7. New Poisson solver, 64x64 grid
- 8. NB: for all cases with 75 ns spacing, use long bunches with σ_z /FW=0.26 and FWHM/FW=0.9 (see p. 6)

 $rac{1}{5}$ Significant difference in overall ecloud density vs. 1- σ density

- —But $d_{1\sigma} >> d_{overall}$, exactly the opposite of LHC short bunch case (see slide 7)!!
 - Almost certainly due to longer bunches in the injectors

Lawrence Berkeley National Laboratory

Years of World-Clas Ecloud density vs. δ_{max} (contd.) mm Science 1031-200

—NB: stainless steel has a larger rediffused fraction than copper

- But not many measurements available of the SEY components
- It would be nice to have more

 \mathbb{R} PS2 and PS+ exhibit quite large d₁₀

— Due to long bunches

R But clear evidence of lack of numerical convergence

—Need to re-do with finer calculation

Heat load vs. δ_{max}

dtotpk

dtotpk

50

1.2

1.3

dtotpk

1.5

1.6

1.7

1.8

1.4

1.6

- Except for long bunches at 75 ns

1.5

dtotpk

-Needs to be double-checked, esp. for PS2 and PS+

1.7

1.8

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 15

1.3

1.4

20

0

1.2

Conclusions

- ∇ Significant differences between electron density within the 1- σ ellipse (d_{1 σ}) and the overall electron density (d_{overall}) for PS and SPS upgrades
 - $-d_{1\sigma}$ >> $d_{overall}$ (typ. for long bunches), or $d_{1\sigma}$ << $d_{overall}$ (typ. for short bunches)
 - Keep this in mind for HEADTAIL-like instability simulations!
- $rac{1}{5}$ Long bunches at t_h=75 ns lead to very low heat load in LHC
 - But may be just as sensitive to instabilities and/or ϵ growth as short bunches
 - I'll provide data for $d_{1\sigma}$ and $d_{overall}$ soon
- K Heat load can be nontrivial in injectors
 - Is this an issue?
- - Not all cases studied
 - Numerical convergence not methodically checked
 - Parameter sensitivity minimally studied
- - Leads intermittently to "virtual cathodes"
 - I believe these are mostly (but not altogether) artificial, due to assumed independence of SEY on sp. ch. E-field
 - Iriso-Peggs maps seem not to have this deficiency (?)

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 16

SPS and PS upgrades

	1 1 1						1.0	14/0				
case	input_me	αιοιρκ	lD	xnpnom	beamen	avekrun	avekurun	avworun	avdensigrun	avdenrun	avinedenrun	avebrun
SPS, 50 GeV, tb=12.5 ns	SPS50_tb12p5_d1p3_hiP_dip	1.30	12.5	1.90E+11	50	2.434E+02	3.897E+02	6.998E-01	1.719E+12	1.832E+12	1.808E+00	7.908E+01
	SPS50_tb12p5_d1p5_hiP_dip	1.50	12.5	1.90E+11	50	2.462E+02	3.356E+02	2.924E+00	5.472E+12	5.073E+12	5.007E+00	2.023E+02
	SPS50 th12n5 d1n7 biP din	1 70	12.5	1 005 - 11	50	2 9265 - 02	2 199E - 02	7 0975 - 00	1 600E 1 12	0.027E+12	9 909E - 00	4 124E+02
	51550_tb12p5_d1p7_111 _dip	1.70	12.5	1.702+11	50	2.0302+02	3.1072+02	7.9072+00	1.000L+13	7.0276+12	0.7072+00	4.1246+02
SPS, 50 GeV, tb=25 ns	SPS50_tb25_d1p3_hiP_dip	1.30	25.0	3.80E+11	50	1.745E+02	2.158E+02	3.128E-01	2.672E+12	1.217E+12	1.201E+00	2.040E+01
	SPS50 tb25 d1p5 hiP dip	1.50	25.0	3.80E+11	50	1.838E+02	1.929E+02	9.222E-01	7.207E+12	2.436E+12	2.404E+00	4.355E+01
	SPS50 th25 d1n7 biP din	1 70	25.0	3.80F+11	50	1 886E±02	1 707E±02	2 484F±00	1 438F±13	4 501E±12	4 442E±00	8.652E±01
000 50 0 11 11 35		1.70	20.0	0.0002111	50	0.1105 00	5.0305.00	2.4042.00	1.4002.110	4.0012112	0.1005.00	0.0022101
SPS, 50 GeV, tb=75 ns	SPS50_tb75_d1p3_niP_dip	1.30	/5.0	6.40E+11	50	3.113E+02	5.270E+02	3.943E-03	6.142E+11	3.4/6E+10	3.430E-02	8.724E-01
	SPS50_tb75_d1p5_hiP_dip	1.50	75.0	6.40E+11	50	2.389E+02	3.606E+02	4.919E-02	2.335E+12	3.577E+11	3.530E-01	5.719E+00
	SPS50 th75 d1n7 biP din	1 70	75.0	6 40E ± 11	50	2 172E+02	2 722E+02	2 669E 01	4 009E+12	1 106E+12	1 190E + 00	1 660E+01
CDC 75 C-1/ # 10 5	SPC75_#10x5_d1p7_111_dip	1.70	10.5	1.005.11	30	2.173E+02	2.7232+02	2.0002-01	4.070E+12	1.1702+12	1.1002+00	1.0000 + 01
SPS, 75 GeV, tb=12.5 hs	SPS75_tb12p5_d1p3_niP_dip	1.30	12.5	1.90E+11	/5	5.123E+02	9.432E+02	6.681E-01	3.854E+12	1.5/2E+12	1.551E+00	1.098E+02
	SPS75_tb12p5_d1p5_hiP_dip	1.50	12.5	1.90E+11	75	4.982E+02	8.669E+02	2.826E+00	6.179E+12	4.359E+12	4.302E+00	3.115E+02
	SPS75 th12p5 d1p7 biP dip	1 70	12.5	1 00E + 11	75	5 7925 - 02	7 7055+02	9 229E - 00	1 960E + 12	9 972E+12	9 757E+00	7 449E+02
000 35 0 11 11 05	51575_tb12p5_d1p7_111 _dip	1.70	12.5	1.70L+11	75	J.702L+02	7.77JL+02	0.23017-00	1.900E+13	0.073L+12	0.7572+00	7.4402+02
SPS, 75 GeV, tb=25 hs	SPS75_tb25_d1p3_niP_dip	1.30	25.0	3.80E+11	/5	1.780E+02	2.550E+02	1.834E-01	4.2/5E+12	7.730E+11	7.629E-01	1.6//E+01
	SPS75_tb25_d1p5_hiP_dip	1.50	25.0	3.80E+11	75	1.888E+02	2.366E+02	6.397E-01	9.180E+12	1.844E+12	1.820E+00	4.196E+01
	SPS75 th25 d1n7 biP din	1 70	25.0	2 POE + 11	75	2.001E+02	2 209E+02	1 909E - 00	1.604E+12	2 /11E+12	2 266E+00	9 604E+01
	5r575_tb25_drp7_nr_dp	1.70	23.0	3.00L+11	/5	2.0712+02	2.2000+02	1.0072+00	1.074E+13	3.4116+12	3.300L+00	0.0042+01
SPS, 75 GeV, tb=75 ns	SPS75_tb75_d1p3_hiP_dip	1.30	75.0	6.40E+11	75	9.794E+01	1.919E+02	3.236E-03	5.530E+11	2.925E+10	2.887E-02	4.167E-01
	SPS75_tb75_d1p5_hiP_dip	1.50	75.0	6.40E+11	75	1.104E+02	2.121E+02	2.845E-02	2.270E+12	2.162E+11	2.133E-01	2.966E+00
	SPS75 th75 d1n7 biP din	1 70	75.0	6 40E ± 11	75	1 104E+02	1.012E+02	1 446E 01	5 112E+12	7.024E+11	6 022E 01	0 517E+00
000 150 0 11 10 50	51575_tb75_d1p7_111_dp	1.70	75.0	0.402+11	150	1.1946+02	7.7132+02	1.4402-01	J.112E+12	7.0246+11	0.7522-01	9.317E+00
SPS, 450 GeV, tb=12.5 ns	SPS450_tb12p5_d1p3_hiP_dip	1.30	12.5	1.90E+11	450	4.185E+02	7.624E+02	1.257E-01	4.458E+12	3.404E+11	3.359E-01	3.691E+01
	SPS450_tb12p5_d1p5_hiP_dip	1.50	12.5	1.90E+11	450	4.475E+02	6.139E+02	8.113E-01	7.566E+12	1.538E+12	1.518E+00	1.559E+02
	SPS450 th12p5 d1p7 biP dip	1 70	12.5	1 005 - 11	450	4 7225 - 02	4 001E+02	2 201E L 00	4 544E+12	4 129E - 12	4 094E+00	2 7995 . 02
	515450_tb12p5_d1p7_111_dip	1.70	12.5	1.702+11	450	4.723L+02	4.7712+02	3.3712+00	4.3446+13	4.130L+12	4.0042+00	3.700L+02
SPS, 450 GeV, tb=25 ns	SPS450_tb25_d1p3_hiP_dip	1.30	25.0	3.80E+11	450	3.783E+02	8.186E+02	7.774E-02	3.150E+12	3.165E+11	3.123E-01	3.030E+01
	SPS450_tb25_d1p5_hiP_dip	1.50	25.0	3.80E+11	450	4.169E+02	7.410E+02	3.547E-01	5.039E+12	9.956E+11	9.826E-01	9.854E+01
	SPS450 th25 d1n7 biP din	1 70	25.0	2 POE + 11	450	4.642E+02	6 960E+02	1.091E+00	1 002E+12	1 099E+12	1 962E + 00	2 000E + 02
	515450_tb25_d1p7_111_dip	1.70	23.0	3.00L+11	450	4.0422+02	0.00002+02	1.0012+00	1.0722+13	1.700L+12	1.7022+00	2.0702+02
SPS, 450 GeV, tb=75 ns	SPS45U_tb75_d1p3_hiP_dip	1.30	75.0	6.40E+11	450	2.105E+02	4.734E+02	2.690E-03	8.078E+11	2.056E+10	2.029E-02	1.118E+00
	SPS450 tb75 d1p5 hiP dip	1.50	75.0	6 40F+11	450	2 034E+02	4.571E+02	2 203E-02	2.884F+12	1.573E+11	1.552E-01	6.179E+00
	SPS450_tb75_d1p7_biP_dip	1.70	75.0	6.40E+11	450	1.001E+02	2 901E 02	1 224E 01	6 295E 12	6 129E + 11	6 049E 01	2 001E 01
	3F3450_tb75_d1p7_11F_dip	1.70	75.0	0.40E+11	450	1.991E+02	3.091E+02	1.334E-01	0.303E+12	0.1200+11	0.0466-01	2.001E+01
SPS+a, 50 GeV, tb=12.5 ns	s SPSpa50_tb12p5_d1p3_hiP_dip	1.30	12.5	1.90E+11	50	2.120E+02	3.471E+02	7.814E-01	2.276E+12	2.260E+12	1.738E+00	7.114E+01
	SPSpa50 tb12p5 d1p5 hiP din	1.50	12.5	1.90E+11	50	2.437E+02	3.260E+02	3.003E+00	6.679E+12	5.747E+12	4.420E+00	1.901E+02
	SDSpaE0_th12pE_d1p7_hiD_dip	1.70	12.5	1.005.11	50	2 449E - 02	2.0505.02	0 5945 .00	1 7405 . 12	1 1775 . 12	0.0505.00	4 1925 . 02
	3F3pa30_tb12p3_d1p7_file_dip	1.70	12.5	1.90E+11	50	2.000E+02	2.950E+02	9.000E+00	1.709E+13	1.1//E+13	9.030E+00	4.102E+U2
SPS+a, 50 GeV, tb=25 ns	SPSpa50_tb25_d1p3_hiP_dip	1.30	25.0	3.80E+11	50	1.599E+02	1.890E+02	3.686E-01	2.717E+12	1.536E+12	1.181E+00	1.621E+01
	SPSpa50_tb25_d1p5_biP_dip	1.50	25.0	3.80F+11	50	1.585E+02	1.610E+02	1.093E+00	5.684E+12	3 162E+12	2 432E+00	3.346E+01
	CDCarEO thOE dia 7 hiD dia	1.70	25.0	2.005.11	50	1 (505.00	1 4005 .00	2 7005 .00	1.0045.10	5.0/35.10	4 1005 .00	(14/5 .01
	3F3pa30_tb25_d1p7_filF_dip	1.70	25.0	3.60E+11	50	1.033E+02	1.423E+02	2.760E+00	1.334E+13	3.307E+12	4.120E+00	0.140E+01
SPS+a, 50 GeV, tb=75 ns	SPSpa50_tb75_d1p3_hiP_dip	1.30	75.0	6.40E+11	50	3.277E+02	5.115E+02	3.658E-03	5.501E+11	3.421E+10	2.631E-02	7.258E-01
	SPSpa50_tb75_d1p5_biP_dip	1.50	75.0	6 40F+11	50	2.328E+02	3.587E+02	3.861E-02	2.250E+12	3 194E+11	2 456E-01	4.335E+00
	EDEpaEO_th7E_d1p7_biD_dip	1 70	75.0	6 40E 11	FO	2.0745.02	2.440E . 02	2 2115 01	2.044E - 12	1 2245 . 12	0.4205.01	1 4245 01
	SPSpas0_tb/s_dip/_niP_dip	1.70	/5.0	0.40E+11	50	2.076E+02	2.009E+02	2.311E-01	3.944E+12	1.220E+12	9.430E-01	1.434E+01
SPS+b, 75 GeV, tb=12.5 ns	s SPSpb100_tb12p5_d1p3_hiP_dip	1.30	12.5	1.90E+11	75	4.649E+02	8.392E+02	9.360E-01	4.897E+12	2.342E+12	1.801E+00	1.239E+02
	SPSpb100_tb12p5_d1p5_biP_dip	1.50	12.5	1.90E+11	75	4.297E+02	7.365E+02	3.603E+00	6.853E+12	6.089E+12	4.683E+00	3.086F+02
	CDCabloo_tb12a5_d1a7_bip_dia	1.00	12.0	1.005.11	70	(1415 02	7.30002.02	0.00000 000	1.7015 . 12	0.3535.12	7.0002.00	7.5145.00
	SPSpb100_tb12p5_d1p7_niP_dip	1.70	12.5	1.90E+11	/5	0.141E+02	7.715E+02	8.338E+00	1.701E+13	9.753E+12	7.500E+00	7.514E+02
SPS+b, 75 GeV, tb=25 ns	SPSpb100_tb25_d1p3_hiP_dip	1.30	25.0	3.80E+11	75	1.621E+02	2.253E+02	2.044E-01	4.980E+12	9.330E+11	7.175E-01	1.312E+01
	SPSpb100_tb25_d1p5_biP_dip	1.50	25.0	3.80F+11	75	1.650E+02	2 009E+02	7.661E-01	8.651E+12	2.367E+12	1.821E+00	3.305E+01
	CDCabloo #b05 d1a7 bib dia	1.70	25.0	2.005.11	70	1 7505 .00	1.0/15.00	2 1075 00	1.4015.10	4.0015.10	2 2025 . 00	(5005 .01
	SPSpb100_tb25_d1p7_niP_dip	1.70	25.0	3.80E+11	/5	1.758E+02	1.801E+02	2.107E+00	1.491E+13	4.281E+12	3.292E+00	0.244E+01
SPS+b, 75 GeV, tb=75 ns	SPSpb100_tb75_d1p3_hiP_dip	1.30	75.0	6.40E+11	75	9.268E+01	1.859E+02	3.123E-03	5.193E+11	2.973E+10	2.287E-02	3.546E-01
	SPSph100_th75_d1p5_biP_dip	1 50	75.0	6 40F+11	75	1.072E±02	2 248E±02	2 233E-02	2 063E±12	1 910F±11	1 468E-01	2 374F±00
	51 5pb 100_tb 75_d1p5_111 _dip	1.50	75.0	0.402 + 11	75	1.0722+02	2.2402+02	2.2332-02	2.0032+12	1.710L+11	1.400L-01	2.3742+00
	SPSpb100_tb75_d1p7_niP_dip	1.70	/5.0	0.40E+11	/5	1.104E+U2	2.082E+02	1.339E-01	4.784E+12	7.537E+11	5.797E-01	9.177E+00
SPS+, 1000 GeV, tb=12.5 r	ns SPSp1000_tb12p5_d1p3_hiP_dip	1.30	12.5	1.80E+11	1000	4.843E+02	9.778E+02	1.931E-01	4.246E+12	5.256E+11	4.042E-01	5.357E+01
	SPSn1000_th12n5_d1n5_biP_din	1.50	12.5	1 90E + 11	1000	5 042E+02	9 222E+02	9 902E 01	1 2425 - 12	1 721E+12	1 222E + 00	1 656E+02
	SPS=1000_tb12p5_d1p5_111_dip	1.30	12.5	1.000.11	1000	5.0422+02	3 (115 02	0.0732-01	1.3436+13	2.1005.12	2.4(00-00	2.2725.02
	SPSp1000_tb12p5_a1p7_niP_aip	1.70	12.5	1.80E+11	1000	5.962E+02	7.611E+02	2.552E+00	4.259E+13	3.199E+12	2.460E+00	3.3/3E+02
SPS+, 1000 GeV, tb=25 ns	SPSp1000_tb25_d1p3_hiP_dip	1.30	25.0	3.60E+11	1000	4.070E+02	9.670E+02	7.615E-02	2.035E+12	3.354E+11	2.579E-01	2.612E+01
	SPSn1000_th25_d1n5_biP_din	1 50	25.0	3.60F±11	1000	4 341E±02	8 553E±02	4 072E-01	3 526E+12	1 214F+12	9 340F-01	9 914F±01
	SPS=1000_tb25_d1p5_hip_dia	1.30	25.0	3.000 + 11	1000	4.341E+02	0.000000	1.1045.00	1.0755 12	0.0005.10	1.3402-01	2.2545.02
	SPSp1000_tb25_d1p7_niP_dip	1.70	25.0	3.60E+11	1000	5.2/1E+02	8.633E+02	1.184E+00	1.075E+13	2.293E+12	1.763E+00	2.254E+02
SPS+, 1000 GeV, tb=75 ns	SPSp1000_tb75_d1p3_hiP_dip	1.30	75.0	6.20E+11	1000	6.364E+02	1.232E+03	1.593E-03	9.246E+11	9.862E+09	7.584E-03	1.717E+00
	SPSn1000_th75_d1n5_biP_din	1.50	75.0	6 20E ± 11	1000	5 267E+02	1 121E+02	5 120E 02	2 002E+12	2 451E+10	2.654E.02	4 579E+00
	5.5p.500_tb75_u1p5_1iir_uip	1.50	75.0	0.20L+11	1000	5.2072+02	1.1212+03	J.137E-03	3.073L+12	0.5015	2.0346-02	
	SPSp1000_tb75_d1p7_hiP_dip	1.70	75.0	6.20E+11	1000	5.043E+02	9.966E+02	6.653E-02	2.268E+13	3.581E+11	2.754E-01	3.811E+01
SPS, 50 GeV, tb=12.5 ns, r	io SPS50_tb12p5_d1p3NR_hiP_dip	1.30	12.5	1.90E+11	50	1.46E+02	2.78E+02	6.40E-03	2.12E+11	2.986E+10	2.95E-02	1.486E+00
	SPS50 th12n5 d1n5NR bip din	1.50	125	1 90F ± 11	50	1 31E+02	2 23E+02	2 96F-01	3 86F±11	8 659F+11	8 55F-01	3 229F + 01
	CDCC0_tb12p5_d1p3NR_IIP_dlp	1.30	12.3	1.005.11	50	1.000-02	2.236+02	2.702-01	3.00L+11	0.0070-11	1.005.00	3.2270-01
	SPSSU_t012p5_01p/NR_niP_dip	1.70	12.5	1.90E+11	50	1.33E+02	2.01E+02	1.08E+00	4.65E+11	∠.018E+12	1.99E+00	7.529E+01
SPS, 50 GeV, tb=25 ns. no	r(SPS50_tb25_d1p3NR_hiP_dip	1.30	25.0	3.80E+11	50	1.29E+02	1.71E+02	8.30E-02	1.16E+12	4.820E+11	4.76E-01	7.696E+00
	SPS50 tb25 d1p5NR biP dip	1.50	25.0	3.80F+11	50	1.28E+02	1.42E+02	2.57E-01	1.71E+12	1.043E+12	1.03E+00	1 774E+01
	CDCED that dis the his dis	1 70	20.0	2 005 11	50	1 205 - 02	1 205 02	4 455 01	2 075 12	1 7705 12	1 755 00	2 2045 - 61
	SPSSU_tb25_d1p7NR_niP_dip	1.70	25.0	3.80E+11	50	1.28E+02	1.20E+02	0.45E-UT	3.85E+12	1.770E+12	1.75E+00	3.204E+01
SPS, 50 GeV, tb=75 ns, no	r(SPS50_tb75_d1p3NR_hiP_dip	1.30	75.0	6.40E+11	50	4.03E+02	7.14E+02	1.14E-03	2.83E+11	1.260E+10	1.24E-02	4.767E-01
	SPS50 th75 d1p5NR biP dip	1.50	75.0	6 40F+11	50	2 97F±02	5.60E±02	2 03E-03	4 81F+11	2 313E±10	2 28E-02	6 732E-01
	SDSEO th7E d1p7ND biD dia	1.70	75.0	4 40E 11	EC	1.045.02	2.405.02	4 575 00	1.105.10	7 2745 . 10	7 205 02	1 E14E . 00
	SPSSU_LD/S_d Ip/NR_niP_dip	1.70	/5.0	0.40E+11	50	1.90E+U2	3.02E+02	0.57E-U3	1.10E+12	7.374E+10	7.28E-02	1.510E+00
PS2, 50 GeV, tb=12.5 ns	PS50_tb12p5_d1p3_hiP_dip	1.30	12.5	2.00E+11	50	2.47E+02	2.82E+02	6.57E-01	3.31E+13	1.540E+12	3.16E+00	5.503E+01
	PS50 tb12p5 d1p5 hiP dip	1.50	12.5	2 00F+11	50	1.88E+02	2.17E+02	1.75E+00	4.17E+13	3.362F+12	6.90F+00	8.818F+01
	DEED this pe dia 7 hip d'-	1.30	12.5	2.005.11	EC	1.0000.02	1.475.02	2.075.00	2.00E . 12	4 200E - 12	0.425.00	0.0925.01
	r 350_m rzho_a rb /_niP_aip	1.70	12.0	2.00E+11	50	1.02E+U2	1.4/E+U2	3.0/E+00	2.0UE+13	4.200E+12	0.03E+00	7.702E+01
PS2, 50 GeV, tb=25 ns	PS50_tb25_d1p3_hiP_dip	1.30	25.0	4.00E+11	50	3.18E+02	4.06E+02	4.00E-01	1.83E+13	1.223E+12	2.51E+00	4.169E+01
	PS50 tb25 d1p5 hiP din	1.50	25.0	4.00F+11	50	2.97F+02	3.40F+02	1.02F+00	4.12F+13	2.059F+12	4.22F+00	6.890F+01
	PS50 th25 d1n7 biP din	1.70	25.0	4 00E + 11	50	2 115 02	2 1 2E + 02	2 205 00	6 56E ± 12	2 00/E 12	5 96E 100	1.0505.02
	1330_tb25_u1p7_tile_ulp	1.70	20.0	4.UUE+11	- 50	3.11E+02	3.12E+U2	2.20E+00	0.00E+13	2.7040+12	0.90E+00	1.030E+02
PS2, 50 GeV, tb=75 ns	PS50_tb75_d1p3_hiP_dip	1.30	75.0	6.60E+11	50	1.62E+02	2.69E+02	2.86E-02	5.07E+12	1.658E+11	3.40E-01	3.258E+00
	PS50 tb75 d1p5 hiP dip	1.50	75.0	6.60E+11	50	1.70E+02	2.38E+02	1.25E-01	1.36E+13	4.651E+11	9.54E-01	9.588E+00
	PS50 th75 d1p7 biP dip	1.70	75.0	6 60E 11	50	1.915+02	2.175.02	2.64E.01	2.655 + 12	9 499E - 11	1 746+00	1 9665 01
	1330_tb/5_d tp/_nin_dip	1.70	75.0	0.00E+11		1.01E+02	2.1/E+U2	3.04E-01	2.00E+13	0.400E+11	1.74E+00	1.000E+U1
PS+, 75 GeV, tb=12.5 ns	PS75_tb12p5_d1p3_hiP_dip	1.30	12.5	2.00E+11	75	3.05E+02	3.70E+02	4.64E-01	4.38E+13	1.059E+12	2.17E+00	5.009E+01
	PS75 tb12p5 d1p5 hiP din	1.50	12.5	2.00E+11	75	2.53E+02	3.04E+02	1.43E+00	1.10E+14	2.588E+12	5.31E+00	9.379E+01
	PS75_tb12p5_d1p7_biP_dip	1.70	12 F	2 00E 11	75	2 265 - 02	1.046+02	2 125 .00	9 57E 1 1 2	4.0595+12	9 22E . 00	1 2505 .02
PO 75 0 V V 05	r sr s_mrzps_urpr_nie_dip	1.70	12.0	2.00E+11	/5	2.200+02	1.74E+U2	3.12E+00	0.3/E+13	4.030E+12	0.32E+00	1.237E+02
PS+, 75 GeV, tb=25 ns	PS/5_tb25_d1p3_hiP_dip	1.30	25.0	4.00E+11	75	7.94E+02	8.83E+02	3.53E-01	2.00E+13	1.025E+12	2.10E+00	8.393E+01
	PS75_tb25_d1p5_hiP_dip	1.50	25.0	4.00E+11	75	7.17E+02	6.88E+02	9.78E-01	3.75E+13	1.866E+12	3.83E+00	1.461E+02
	PS75 th25 d1n7 biP din	1 70	25.0	4 00E + 11	75	6 41E+02	5 47E+02	2 275 00	7 965 1 12	2 709E 1 12	5 74E+00	2.0525.02
DC . 75 C-1/ 4h 75	PCZE that dial his dia	1.70	20.0	4.00E+11	/0	0.41E+02	0.47E+U2	2.276+00	7.00E+13	2./70E+12	3.74E+00	2.003E+02
PS+, /5 GeV, ID=/5 NS	PS/5_0/5_01p3_nP_ap	1.30	/5.0	0.60E+11	/5	2.83E+02	4.4/E+02	2.96E-02	7.40E+12	1.59/E+11	3.28E-01	5.825E+00
	PS75_tb75_d1p5_hiP_dip	1.50	75.0	6.60E+11	75	2.77E+02	3.70E+02	1.32E-01	1.75E+13	4.584E+11	9.40E-01	1.645E+01
	PS75 th75 d1p7 biP dip	1 70	75.0	6 60E 11	75	2 765 - 02	2 14E+02	4 00E 01	2 20E 1 12	9 75 2E + 11	1 905 .00	2 190E - 01
	1 37 3_m7 3_u tp7_tiir_uip	1.70	/0.0	0.00E+11	15	2.70E+02	3.14E+U2	4.07E-01	3.∠7E+13	0.7036+11	1.0UE+UU	3.10UE+U1

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 17

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

LHC, t_b =12.5 ns, σ_z =3.78 cm

case	xnpnom	dtotpk	avekrun	avek0run	avWCrun	avdensigrun	avdenrun	avlinedenrun	avPDrun
LHC_12p5_0p5_1p0	5.00E+10	1	2.42E+01	6.52E+01	5.50E-03	1.56E+10	3.29E+10	6.56E-03	4.19E-02
LHC_12p5_1p0_1p0	1.00E+11	1	4.31E+01	1.01E+02	1.33E-02	6.70E+09	5.95E+10	1.19E-02	2.14E-01
LHC_12p5_1p5_1p0	1.50E+11	1	4.47E+01	1.17E+02	1.73E-02	5.42E+09	6.31E+10	1.26E-02	3.32E-01
LHC_12p5_1p7_1p0	1.70E+11	1	4.62E+01	1.27E+02	1.90E-02	6.99E+09	6.51E+10	1.30E-02	4.04E-01
LHC_12p5_2p0_1p0	2.00E+11	1	4.79E+01	1.38E+02	2.14E-02	5.69E+09	6.69E+10	1.33E-02	5.08E-01
LHC_12p5_0p5_1p1	5.00E+10	1.1	4.62E+01	1.21E+02	4.68E-02	1.49E+11	3.52E+11	7.02E-02	9.02E-01
LHC_12p5_1p0_1p1	1.00E+11	1.1	5.61E+01	1.28E+02	9.03E-02	8.84E+09	5.82E+11	1.16E-01	2.21E+00
LHC_12p5_1p5_1p1	1.50E+11	1.1	5.30E+01	1.41E+02	6.18E-02	5.51E+09	3.63E+11	7.23E-02	1.61E+00
LHC_12p5_1p7_1p1	1.70E+11	1.1	5.36E+01	1.53E+02	5.39E-02	6.15E+09	2.97E+11	5.93E-02	1.50E+00
LHC_12p5_2p0_1p1	2.00E+11	1.1	5.25E+01	1.62E+02	4.70E-02	7.10E+09	2.30E+11	4.58E-02	1.35E+00
LHC_12p5_0p5_1p2	5.00E+10	1.2	4.83E+01	1.29E+02	1.49E-01	1.83E+12	1.03E+12	2.05E-01	2.49E+00
LHC_12p5_1p0_1p2	1.00E+11	1.2	5.94E+01	1.39E+02	2.34E-01	1.83E+10	1.39E+12	2.77E-01	5.40E+00
LHC_12p5_1p5_1p2	1.50E+11	1.2	5.85E+01	1.49E+02	1.93E-01	9.32E+09	1.13E+12	2.26E-01	5.21E+00
LHC_12p5_1p7_1p2	1.70E+11	1.2	5.75E+01	1.58E+02	1.79E-01	8.70E+09	1.03E+12	2.06E-01	5.05E+00
LHC_12p5_2p0_1p2	2.00E+11	1.2	5.67E+01	1.67E+02	1.56E-01	7.79E+09	8.75E+11	1.74E-01	4.69E+00
LHC_12p5_0p5_1p3	5.00E+10	1.3	4.77E+01	1.16E+02	2.72E-01	3.55E+12	1.69E+12	3.36E-01	3.66E+00
LHC_12p5_1p0_1p3	1.00E+11	1.3	6.26E+01	1.64E+02	4.28E-01	7.90E+10	2.29E+12	4.57E-01	9.45E+00
LHC_12p5_1p5_1p3	1.50E+11	1.3	6.09E+01	1.53E+02	3.63E-01	1.45E+10	1.95E+12	3.88E-01	9.19E+00
LHC_12p5_1p7_1p3	1.70E+11	1.3	5.95E+01	1.59E+02	3.54E-01	1.43E+10	1.87E+12	3.73E-01	9.24E+00
LHC_12p5_2p0_1p3	2.00E+11	1.3	6.06E+01	1.74E+02	3.30E-01	1.39E+10	1.74E+12	3.47E-01	9.67E+00

Backup material

abree components of secondary emission: sample spectrum at E₀=300 eV

LARP

FIG. 2. A sample of the measured energy spectrum $d\delta/dE$ for an unconditioned sample of stainless steel at $E_0 = 300 \text{ eV}$, normal incidence. The three components of the secondary yield are given by the values of "area $[E_1, E_2]$," each of which represents the integrated spectrum between E_1 and E_2 . Thus for this case, $\delta_{ts} = 1.17$, $\delta_r = 0.75$, and $\delta_e = 0.12$, for a total SEY $\delta = 2.04$. The upper energy cutoff for the true secondaries is somewhat arbitrarily, but conventionally, chosen to be 50 eV. Data courtesy of R. Kirby.

from M. F. and M. Pivi, PRST-AB **5**, 124404 (2002)

Secondary emission spectrum

- 尽 Depends on material and state of conditioning
 - —St. St. sample, E_0 =300 eV, normal incidence, (Kirby-King, NIMPR A469, 1 (2001))

~5 ns after bunch passage: 1st wave of electrons hits the wall (were kicked by the beam)

~5 ns later: second wave of electrons hits the wall; these were mostly rediffused electrons created when the 1st wave hit the wall

NB: the 2nd wave is absent in the "NR" case ("no rediffused")

Four successive bunches in a 25-ns batch

The 2nd wave leads to a higher effective SEY (δ_{eff}) than in the "NR" case...

[definition: δ_{eff} = (no. of emitted electrons)/(no. of incident electrons) averaged over all electron-wall collisions anywhere on the chamber wall, over any given time interval]

M. Furman, "ecloud in PS2, PS+, SPS+" p. 23

A verage electron line density comparison w/wo rediffused electrons

...which leads to ~twice the number of electrons...

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

Average power deposition comparison w/wo rediffused electrons

...which, in turn, leads to ~twice the power deposition.

Most of the power deposition comes from the 1st-wave electrons. The factor ~2 is mostly because there are ~twice the number of electrons.

The 2nd wave contributes an additional ~5-10% of "direct" power deposition (small bump ~10 ns after the bunch passage)

Conditioning

- $∧ \delta_{max} ~1$ when *D*~1 C/cm² — under vacuum and steady e⁻ current
- racking ECE is a self-conditioning effect
 - Beam conditioning observed at SPS, PSR, PEP-II, RHIC...

Conditioning effects–contd.

- the result δ(0)≈1 seems unconventional
- if validated, it could have a significant unfavorable effect on the EC power deposition in the LHC
 - because $\delta(0)$ controls the dissipation rate of the EC
 - large δ(0) ← electrons survive longer in between bunches

Years of World-Clas

Science

<u>R. Cimino and I. Collins</u>, Appl. Surf. Sci. **235**(1), p. 231 (2004)

Code features

POSINST

- 尽 Detailed SEY model
 - distributed by Tech-X
- - electrons are dynamical, beam is prescribed
 - geared towards determining EC buildup and e⁻ distribution in time, space and energy
- Basic ionization, photoelectric and ione⁻ generation models
- ∧ Arbitrary beam fill pattern

- ∧ Arbitrary longitudinal bunch profile
- Transverse bunch profile: selectable from several choices
- Simple kick-drift e[−] mover

WARP/POSINST

- K All of POSINST, plus:
- ∧ SD, beam-cloud self-consistent
- Detailed ionization, ion-e⁻ generation models and gas desorption
- Space-charge: AMR 3D (2D x-y and r-z modes available)
- ► MAD input for lattice
- ∧ Arbitrary external fields (EM or B)
- ∧ Arbitrary chamber shape
- ∧ Arbitrary 3D bunch distribution
- Hybrid Boris/drift mover for e⁻ in B fields
- r GUI

BIM in the APS: benchmark code POSINST

Time-averaged e⁻ flux at wall vs. bunch spacing (e⁺ beam, 10-bunch train, field-free region)

Lawrence Berkeley National Laboratory M. Furman, "ecloud in PS2, PS+, SPS+" p. 29

LHC-LUMI-06 (Valencia, 16-20 Oct., 2006)

PSR: benchmark code POSINST

- $rac{}$ Bunch length >> Δt
 - a portion the EC phase space is in resonance with the "bounce frequency"
 - "trailing edge multipacting" (Macek; Blaskiewicz, Danilov, Alexandrov,...)

