

LHC cryogenic system upgrade for various luminosity upgrade scenarios

LUMI '06, Valencia 16-20 October 2006

L. Tavian, CERN AT Department

Beam parameters for various upgrade options

Effective luminosity for various upgrade options

parameter	symbol	nominal	ultimate	shorter bunch	longer bunch				
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	6.0				
bunch spacing	Δt _{sep} [ns]	25	25	12.5	75				
average current	I [A]	0.58	0.86	1.72	1.0				
longitudinal profile		Gaussian	Gaussian	Gaussian	flat				
rms bunch length	σ _z [cm]	7.55	7.55	3.78	14.4				
ß* at IP1&IP5	ß* [m]	0.55	0.50	0.25	0.25				
full crossing angle	θ _c [µrad]	285	315	445	430				
Piwinski parameter	θ _c σ _z /(2σ*)	0.64	0.75	0.75	2.8				
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.3	9.2	8.9				
events per crossing		19	44	88	510				
IBS growth time	τ _{x,IBS} [h]	106	72	42	75				
nuclear scatt. lumi lifetime	τ _N /1.54[h]	26.5	17	8.5	5.2				
lumi lifetime (τ _{gas} =85 h)	τ _L [h]	15.5	11.2	6.5	4.5				
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.4	0.8	2.4	1.9				
(T _{turnaround} =10 h)	T _{run} [h] optimum	14.6	12.3	8.9	7.0				
effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.5	1.0	3.3	2.7				
(T _{turn} =5 h)	T _{run} [h] optimum	10.8	9.1	6.7	5.4				

CERN

F. Ruagiero

Beam parameters and heat load data

Scenario		Nominal	Ultimate	Short- bunch	Long- bunch
energy, E	[TeV]	7	7	7	7
beam current, I	[A]	0.58	0.86	1.72	1
bunch number, nb	[-]	2808	2808	5616	936
bunch spacing, sb	[ns]	25	25	12.5	75
bunch current, Ib	[mA]	0.2	0.3	0.3	1.1
rms bunch length, s _z	[mm]	75.5	75.5	37.8	144
luminosity, L	[cm ⁻² .s ⁻¹]	10 ³⁴	2.3.10 ³⁴	9.2.10 ³⁴	8.9.10 ³⁴
resistive heating	[W/m]	0.1	0.1	0.1	0.1
synchrotron radiation	[W/m]	0.34	0.50	1.0	0.58
image currents	[W/m]	0.30	0.66	3.7	1.9
beam gas scattering	[W/m]	0.076	0.11	0.23	0.13
average e-clouds	[W/m]	2.1	2.1	27	0.52
RF losses per half insertion	[W]	214	480	1000	2040
secondaries per half insertion	[W]	190	440	1770	1710

Luminosity Upgrade Scenarios, 16-20 October 2006

Cryogenic layout configurations

Accelerator

Technology

Existing cryoplant model

 Q_{hc} : QUI phase separator for line C recooldown after hydrostatic compression $m_2 = 0.09^*m_1$ for new cryoplant, $m_2 = 0$ for Ex-LEP cryoplant

CCS: Cold compressor system seen by the cryoplant as 4.6 - 20 K loads $m_3 = 0.1254 * Q_{1.9 \text{ K LHe}} / 2400$ $m_{3\text{min}} = 0.04 \text{ kg/s} (CC \text{ adaptation})$

 $Q_{4.5 \text{ K LHe}}$: Standalone magnets, DFBs and Cavities $m_4 = Q_{4.5 \text{ K LHe}} / (H_8 - H_C)$ H_8 : Saturated GHe @ 4.5 K

 $\begin{array}{l} Q_{\rm 4.6-20\ K} : BS \ cooling \ loop \ load \\ m_{\rm 5} = m_{\rm 1} - m_{\rm 2} - m_{\rm 3} - m_{\rm 4} \\ Q_{\rm 4.6-20K} = m_{\rm 5}^{-*} \ (H_{\rm 9} - H_{\rm C}) \\ T_{\rm 9} = 20\ K \end{array}$

Q_{20-300 K} : Current lead cooling loop load

 $Q_{\scriptscriptstyle 50\text{-}75\ \text{K}}$: Thermal shield cooling loop load

Required cryoplant capacity (Without contingency)

		Existi	ng LHC Cryopl	New Cryoplant capacity			
Scenario	Lavout	1.8 K unit		4.5.K.Cryoplant	PE Cryoplant		
Occitatio	Layout	IT @ 1.8 K	IT @ 4.5 K	4.5 K Cryopiant	KF Cryopiant		
		[kW @ 1.8 K]		[kW @ 4.5 K]	[kW@ 4.5 K]	[kW @ IT Temp.]	
Nominal	Layout 1	1.0	N/A	1.2	N/A	N/A	
Ultimate	Layout 1	0.6	1.1	-1.2	N/A	N/A	
	Layout 2	0.6	1.1	0.2	1.4	N/A	
	Layout 3	1.1	1.1	-0.1	N/A	0.9	
	Layout 4	1.1	1.1	1.3	1.4	0.9	
	Layout 1	-1.8	0.0	-51	N/A	N/A	
Short-	Layout 2	-1.8	0.0	-48	2.4	N/A	
bunch	Layout 3	0.0	0.0	-47	N/A	3.5	
	Layout 4	0.0	0.0	-44	2.4	3.5	
	Layout 1	-0.7	1.1	-9.0	N/A	N/A	
Long-	Layout 2	-0.7	1.1	-3.1	4.5	N/A	
bunch	Layout 3	1.1	1.1	-4.5	N/A	3.4	
	Layout 4	1.1	1.1	1.4	4.5	3.4	
Blue: Poss	sible layout			Blue Bold: Recommended layout			

Luminosity Upgrade Scenarios, 16-20 October 2006

Local cooling limitations

Soonaria	BS cooling loop	1.9 K cooling loop			
Scenario	[W/m/aperture]	[W/m]			
Nominal	1.5	0.40			
Ultimate	1.7	0.44			
Short-bunch	16	0.81			
Long-bunch	1.6	0.45			
Local limitation	2.4 *	0.9 **			

*: limited by the hydraulic impedance of the cooling channels and calculated for a supply pressure (header C) of 3 bar.

**: limited by the sub-cooling heat exchanger capacity

Remark: In the BS, 16 W/m can be extracted with a supply pressure (header C) of 20 bar. However, this supply pressure of 20 bar will also increase from 17 to 60 % the gas fraction produced in the final expansion of the 1.9 K cooling loop and will jeopardize the 1.9 K refrigeration capacity.

An alternative to keep the supply at 3 bar is to change the BS in all the magnet and increase the cooling channel diameter to 8 mm \rightarrow beam aperture issue ?

- If the e-clouds heat loads are well estimated:
 - » The consideration of both overall capacity and local cooling requirements shows that the Short-bunch scenario is not feasible from the cryogenic point of view.
 - » Concerning the upgrade of the RF cooling, in order to avoid two consecutive upgrades for the Ultimate and for the Long-bunch scenarios, it is recommended to upgrade the cryogenic system directly with the Long-bunch cavities requirements.
 - » Consequently, in the following, only the Long-bunch scenarios will be studied and cost estimated.

Equivalent installed capacity at 4.5 K of additional cryoplants

- The choice of the SC material for the IT magnets is still open.

- In addition, even if Nb3Sn is chosen, sub-cooling of He could be required for heat extraction.

 \rightarrow Study with 3 different temperatures: 1.8, 2 & 4.5 K

Cryoplant	Inner ⁻	RF cavities cryoplant				
Operating temperature	[K]	1.8	4.5			
Power to be extracted	[kW]		3.4 4.5			
Contingency coefficient	[-]			1.5		
Installed capacity	[W]	[W] 5.1		6.7		
Equivalent capacity @ 4.5 K	[kW]	18.3 16 5.1			6.7	

Luminosity Upgrade Scenarios, 16-20 October 2006

Basic assumptions for cryoplant architecture

- To cope with large hydrostatic head due to high elevation difference in access shafts, refrigeration at 2 K or below requires installing the cold compression in underground caverns.
- For refrigerators with an equivalent capacity at 4.5 K smaller than about 6 kW, the whole cold box can be located in underground caverns.
- For refrigerators producing isothermal refrigeration at 4.5 K or refrigeration below 2 K with an equivalent capacity higher than 7 kW, the cold box has to be split in two. In case of cold compression, the splitting temperature must be higher than the outlet temperature of the last cold compression stage.
- The warm compressor station is installed at ground level in a noise-insulated building.
- The maximum capacity of a cold compressor set is 2.6 kW at 1.8 K and 5.2 kW at 2 K. Above these values, the cold compressor set must be duplicated for parallel compression.

Cryogenic architecture for IT and RF cooling

Cost breakdown of cryogenic system for Long-bunch luminosity upgrade

Cryogenic system		lr	Inner triplet				
Operating temperature	[K]	1.8	2.0	4.5	4.5		
Refrigerator	['98 MCHF]	13	12	5.9	6.9		
Cold compressor	['98 MCHF]	6.5	2.6	0	0		
Underground distribution	['98 MCHF]	1.4	1.3	0.7	0.8		
Vertical transfer line	['98 MCHF]	2.0	2.0	0	0		
Local transfer line	['98 MCHF]	0.5	0	0	0		
Tunnel transfer line	['98 MCHF]	2.0	2.0	2.0	1.0		
Technical service module	['98 MCHF]	0.80	0.80	0.80	0.80		
Storage vessel	['98 MCHF]	0.60	0.60	0.60	0.20		
Interconnecting piping	['98 MCHF]	1.1	1.0	0.57	0.65		
Dryer	['98 MCHF]	0.80	0.75	0.43	0.49		
Additional infrastructure	['98 MCHF]	0.20	0.20	0.20	0.20		
Industrial control	['98 MCHF]	0.60	0.60	0.40	0.40		
Tunnel Instrumentation	['98 MCHF]	0.13	0.13	0.13	0.13		
Total/cryoplant	['98 MCHF]	29	24	12	12		
Cumulated indices from 1998 to 2005	[-]	1.183					
Total/Cryoplant	[MCHF]	35	28	14	14		

Total cost of cryogenic upgrade for Long-bunch scenario with two ITs and one RF section (without contingency)

IT operating temperature	IT upgrade	RF upgrade	Total
[K]	[MCHF]	[MCHF]	[MCHF]
1.8	69	14	83
2	56	14	70
4.5	28	14	42

Building and general service requirements

Cryogenic sys	Cryogenic system				Inner triplets			
Operating tem	perature	[K]	1.8	2	4.5	4.5		
	Surface	[m2]	700	600	500	500		
	Crane	[t]	20	20	20	20		
Warm	Electrical power	[MW]	4,6	4,0	1,5	2,0		
compressor	Cooling water	[m3/h]	540	450	174	227		
building	Compressed air	[Nm3/h]	30	30	20	20		
	Ventilation	[kW]	250	200	100	100		
	Туре	[-]	Noise-insulated		ed (~108	ed (~108 dB_A)		
	Surface	[mxm]	30x10	30x10	N/A	N/A		
	Height	[m]	12	12	N/A	N/A		
Surface "SD"	Crane	[t]	5	5	N/A	N/A		
building	Electrical power	[kW]	50	50	N/A	N/A		
	Cooling water	[m3/h]	15	15	N/A	N/A		
	Compressed air	[Nm3/h]	90	90	N/A	N/A		
	Volume	[m3]	840	432	360	300		
	Local handling	[t]	2	2	2	2		
Cavern	Electrical power	[kW]	100	70	20	20		
	Cooling water	[m3/h]	20	10	20	20		
	Compressed air	[Nm3/h]	40	20	30	30		

Personnel resource requirement for Longbunch luminosity upgrade scenario (without contingency)

Yea	ir		2006	2007	2008	2009	2010	2011	2012	2013	2014	Total
	Definition & studies &	Cat 2	1,5	1,5	1,5	1,5	1,5	1,5				9
	development	Cat 3-4	2	2	3	3	2	2				14
IT cryog	Specification	Cat 2				1	2					3
	Specification	Cat 3-4				1	2					3
	Procurement & Eabrication	Cat 2						5	5	3		13
Jen		Cat 3-4						3	3	3		9
ic c		Cat 2							1	3	6	10
<u></u> 6	Installation & Commissioning	Cat 3-4							3	3	6	12
rao		FSU							6	6	6	18
e	Total IT cryogenic	Cat 2	1,5	1,5	1,5	2,5	3,5	6,5	6	6	6	35
		Cat 3-4	2	2	3	4	4	5	6	6	6	38
	upgraue	total	3,5	3,5	4,5	6,5	7,5	11,5	12	12	12	73
	Definition	Cat 2				0,5						0,5
	Demnition	Cat 3-4										0
고	Specification	Cat 2					1					1
П С		Cat 3-4					0,5					0,5
ryo	Procurement & Fabrication	Cat 2						1	1	1		3
gei		Cat 3-4						1	1	1		3
nic		Cat 2							1	1	2	4
ŋ	Installation & Commissioning	Cat 3-4							2	2	3	7
gra		FSU							3	3	3	9
de	Total RE cryogenic	Cat 2	0	0	0	0,5	1	1	2	2	2	8,5
		Cat 3-4	0	0	0	0	0,5	1	3	3	3	10,5
	upgrade	total	0	0	0	0,5	1,5	2	5	5	5	19
—		Cat 2	1,5	1,5	1,5	3	4,5	7,5	8	8	8	43,5
	tai cryogenic upgrade	Cat 3-4	2	2	3	4	4,5	6	9	9	9	48,5
for	Long-bunch scenario	total	3,5	3,5	4,5	7	9	13,5	17	17	17	92

Luminosity Upgrade Scenarios, 16-20 October 2006

- Cryogenic system upgrades for three LHC luminosity upgrade scenarios have been studied:
 - » The **Ultimate** scenario can be performed by adding a dedicated cryoplant for the cooling of the RF cavities.
 - The Short-bunch scenario requires an increase of the sector cooling capacity by a factor 4 and shows local limitations in the beam screen cooling circuits. These two showstoppers render this scenario cryogenically unfeasible.
 - The Long-bunch scenario requires to add dedicated cryoplants for the cooling of the RF cavities and of the inner triplets located at the high luminosity interaction points.
- The total cost of the cryogenic upgrade, which varies from 42 to 83 MCHF, depends strongly on the choice of inner triplet operating temperature.
- The need in personnel resources is about 92 person.years spread over 9 years, including 4 years for construction.
- The operating temperature of the inner triplets has to be defined. For this purpose, heat transfer simulations and measurements have to be performed on representative coil geometry and cable insulation with specific heat fluxes up to 10 W/m.