Contents:

- Luminous Region for Collision of Long Flat Bunches
- Collisions with Displaced Beams at Point 8
- > Feasibility of 50 ns Bunch Spacing

Frank Zimmermann & Walter Scandale

3 upgrade options

- 12.5 ns spacing, ultimate intensity
- 25 ns spacing, 2x ultimate intensity,
 2x transverse emittance
- 75 ns spacing `4x intensity, long bunches

parameter	symbol	nominal	ultimate	baseline	alternative	backup
transverse emittance	ε [μm]	3.75	3.75	3.75	7.5	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	3.4	6
bunch spacing	∆t [ns]	25	25	12.5	25	75
beam current	I [A]	0.58	0.86	1.72	1.72	1
longitudinal profile		Gauss	Gauss	Gauss	Gauss	flat
rms bunch length	σ _z [cm]	7.55	7.55	3.78	3.78	14.4
beta* at IP1&5	β* [m]	0.55	0.5	0.25	0.25	0.25
full crossing angle	θ_{c} [murad]	285	315	445	630	430
Piwinski parameter	$\theta_{\rm c}\sigma_{\rm z}/(2^*\sigma_{\rm x}^*)$	0.64	0.75	0.75	0.75	2.8
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1	2.3	9.2	9.2	8.9
events per crossing		19	44	88	176	510
Initial lumi lifetime	τ _L [h]	22	14	7.2	7.2	4.5
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.7	2.7	2.1
(T _{turnaround} =10 h)	T _{run,opt} [h]	21.2	17.0	12.0	12.0	9.4
effective luminosity (T _{turnaround} =5 h)	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6	3.6	2.9
	T _{run,opt} [h]	15.0	12.0	8.5	8.5	6.6
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	13.34 (7.85)	2.56 (2.05)	0.26
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.5	0.5	0.29
image current heat	P _{IC} [W/m]	0.15	0.33	1.87	3.74	0.96
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.113 (1.13)	0.11 (1.13)	0.07 (0.7)

due to the crossing angle, colliding long bunches does not mean the events are spread out over a large area

rms length of luminous region
$$\frac{1}{\sigma_l^2} \approx \left(\frac{2}{\sigma_z^2} + \frac{\theta_c^2}{2\sigma_{x,y}^{*2}}\right)$$

	nominal	ultimate	baseline	alternative	backup
σ _I [cm] w/o & w.crab cr.	4.5	4.3	2.1	2.1	3.5
	5.3	5.3	2.6	2.6	(10.2)*

luminous region is largest for nominal LHC

^{*}long bunch scenario assumes no crab crossing

optimum run time, integrated luminosity, etc.

$$\frac{1}{N_b} \frac{\Delta N_b}{\Delta t} = n_{IP} L \sigma \frac{1}{n_b} \frac{1}{N_b} + c \left(\frac{N}{V}\right)_{vac} \sigma_{vac} \qquad \text{collisions, gas scattering}$$

$$N_b \approx \frac{N_b^0}{1 + n_{IP} L \sigma N_b^0 t / n_b} \equiv \frac{N_b^0}{1 + t / \tau} \qquad \text{intensity evolution for collisions only}$$

$$\frac{1}{\varepsilon_x} \frac{\Delta \varepsilon_x}{\Delta t} = \frac{1}{\tau_{IPS}(N_b, \varepsilon_x, \varepsilon_y, \sigma_z, \sigma_\delta, \dots)} \propto N_b^2 \qquad \text{intrabeam scattering (IBS) growth}$$

burn-off collision lifetime with σ ~100 mbarn, n_{IP} ~2:

 $L_{\text{peak}} = 10^{34} \text{ cm}^{-2}\text{s}^{-1} \text{ in 2808 bunches, } N_b \sim 1.15 \times 10^{11}$:

τ~45 h (luminosity lifetime 22 h)

 $L_{\text{peak}} = 10^{35} \text{ cm}^{-2}\text{s}^{-1} \text{ in 5616 bunches, } N_b \sim 1.7 \times 10^{11}$:

 τ ~14 h (luminosity lifetime 7 h)

 τ_{gas} > 100 h (luminosity lifetime 50 h)

τ_{IBS}~105 h (horizontal emittance growth time; luminosity lifetime 210 h)

burn-off dominates over gas scattering and IBS

$$L(t) = \frac{\hat{L}}{(1 + t / \tau_{eff})^2}$$
 luminosity time evolution
$$L_{ave} = \frac{\hat{L}\tau_{eff}T_{run}}{(\tau_{eff} + T_{run})(T_{run} + T_{turnaround})}$$
 average luminosity
$$T_{run,optimum} = \sqrt{\tau_{eff}T_{turnaround}}$$
 optimum run time

L _{peak} [cm ⁻² s ⁻¹]	beam lifetime τ _{eff} [h]	$T_{turnaround}$	T _{run} [h]	Int <i>L</i> over 200 days	
				[fb ⁻¹]	
10 ³⁴	45	10	21		79
10 ³⁴	45	5	15	6x	97
10 ³⁵	14	10	12	↓	473
10 ³⁵	14	5	8	8x •	629

Collisions with Displaced Beams at Point 8

$$L\sim L_0 \exp(-\Delta^2/(4\sigma^2))$$

if for nominal luminosity L_0 an offset Δ =5 σ is needed, maintaining the same IP8 luminosity at 10x larger L_0 requires ~6 σ offset

RHIC experiment suggests that one collision with $5\text{-}6\sigma$ offset might already affect the beam lifetime; observations from the SPS indicate lifetime degradation due to single off-center collision, similar for HERA

RHIC experiment May 2005, at 24 GeV

single off-center collision

W. Fischer et al.

Long-range beam-beam effect in RHIC at 100 GeV

Table 1: Main parameters for the RHIC test at 100GeV.

quantity	unit	value
proton energy	GeV	100.0
bunches per beam		12
bunch intensity	10^{11}	1.7
long-range location	m from IP	10.6
emittances $\epsilon_{x,y}$ (95%)	mm mrad	10-15
$\beta_{x,y}$, long-range location	m	105
tunes (Q_x, Q_y)		B(0.69, 0.70)
		Y(0.71,0.69)
vertical separation	mm/ σ	1-11/0.7-6.3

- LR at s=10.6m
- Octupoles on in Yellow
- Blue beam moved

proton background in **SPS collider** with 1 head-on and one off-center collision as a function of beam-beam separation (K. Cornelis, LHC99)

long-range beam-beam observations in HERA

lifetime of proton beam drops from 50 h to 1-5 h for a single off-center collision with beam-beam separation between 0.3 and 2 σ (F. Willeke & R. Brinkmann, PAC 93' T. Limberg, LHC'99)

Feasibility of 50 ns Bunch Spacing

- Of course feasible from the accelerator point of view, and such beam was already stored in the SPS (giving a ~2x higher e-cloud threshold)
- The only reason why it is not considered for nominal LHC operation is that for 50-ns spacing there are no collisions at LHCB.
- With the same bunch parameters as the 75-ns upgrade case, it would give 50% higher luminosity. For 18% less bunch current it will give the same luminosity at 22% higher total beam current, but with improved luminosity lifetime. Actually this is an attractive option, if electron cloud still ok.

parameter	symbol	nominal	ultimate	baseline	alternative	backup II
transverse emittance	ε [μm]	3.75	3.75	3.75	7.5	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	3.4	4.9
bunch spacing	∆t [ns]	25	25	12.5	25	50
beam current	I [A]	0.58	0.86	1.72	1.72	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	3.78	3.78	14.4
beta* at IP1&5	β* [m]	0.55	0.5	0.25	0.25	0.25
full crossing angle	θ_{c} [murad]	285	315	445	630	430
Piwinski parameter	$\theta_{\rm c}\sigma_{\rm z}/(2^*\sigma_{\rm x}^*)$	0.64	0.75	0.75	0.75	2.8
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1	2.3	9.2	9.2	8.9
events per crossing		19	44	88	176	340
Initial lumi lifetime	τ _L [h]	22	14	7.2	7.2	5.5
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.7	2.7	2.3
(T _{turnaround} =10 h)	T _{run,opt} [h]	21.2	17.0	12.0	12.0	10.4
effective luminosity	L _{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6	3.6	3.1
(T _{turnaround} =5 h)	T _{run,opt} [h]	15.0	12.0	8.5	8.5	7.3
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	13.34 (7.85)	2.56 (2.1)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.5	0.5	0.36
image current heat	P _{IC} [W/m]	0.15	0.33	1.87	3.74	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.113 (1.13)	0.11 (1.13)	0.09 (0.9)