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Abstract
We consider a collisional 2D model for a beam in a ring. In the smooth focus-
ing approximation the relaxation time scales according to Landau’s theory, but
the p.d.f of momentum jumps has a power law decaying queue. A new hybrid
regime is found for the equipartitioning due to the interplay between collisional
and collective effects. The moments equations of a small perturbation to the
KV distribution are analytically determined and the stability conditions follow
from Floquet’s theory.

1 Introduction

Our model consists in replacing the point charges of a coasting beam (or trains of long bunches) in a ring
with parallel filaments, assuming strong longitudinal coherence. Assuming axial symmetry for a beam
of radius R, denoting by n the particles per unit volume, we have that the number of particles per unit
length is Np = nπR2. Denoting by ` = n−1/3 the specific length, the number of filaments is

N = Np` = N2/3
p R2/3π1/3 .

For a typical beam with Np = 1011 particles/m and R = 5 mm we have N = 106. In figure 1 a sketch
of our filaments is shown. Denoting by (xi, yi) the coordinate of a filament in the transverse plane and
rij the distance between the filaments i and j, the Hamiltonian reads

H tot =
1
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∑
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p2
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x0 x2
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y0 y2
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)

−
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N

∑

i<j

log rij pxi =
dxi

ds
. (1)

The parameters on which H depends, bare phase advances ω0 x, ω0 y and perveance ξ, are N indepen-
dent. Indeed we vary N keeping the charge per unit length Q = N q = Np e and the mass per unit length
M = N m = Np mp fixed, having denoted by e, mp and q, m respectively the charge and mass of a
particle and of a filament of unit length.
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Figure 1. Real beam (left), the parallel filaments (right-)

2 Relaxation and equipartition

We have compared the results obtained by integrating Hamilton’s equations for (1) with kinetic Landau’s
theory, whose 2D version we have developed. The relaxation from any initial distribution ρ0 like KV
to the Maxwell-Boltzmann distribution follows an exponential law ρ = ρ0 e−αs + ρMB (1 − e−αs) and
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using an asymptotic approximation for the 2D Coulomb cross section it can be proved that the relaxation
time scales as N . By varying N from 103 to 104 we have found that τ = cN with an uncertainty ∆c/c
comparable with the statistical error N−1/2 [1]. From Landau’s theory we have

τ = c
N

ξ3/2

εxεy

(〈x2 〉〈 y2 〉)1/4

where we have assumed a proportionality between the cutoff of the Coulomb potential R cut and the De-
bye radius R cut = R [ kB T/(2ξ) ]1/2. This introduces a unique calibration constant c, fixed by a single
simulation. An excellent agreement is found between the theoretical value of τ and the simulations, see
[2]. In figure 2 we show a comparison between the simulations and Landau’s theory once the calibration
constant has been fixed.
When an unstable resonance like the Montague integer one νx = νy is present, a dynamic equipartition
occurs with a time scale of order 1. In presence of a resonance which does not cause a complete dynamic
equipartition, collisions inject particles into the resonance and an equipartition faster with respect to the
pure collisional case due to an interplay with dynamical effects is observed (see [3]).
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Figure 2. Comparison between a simulation (curves) and Landau’s theory (diamonds). The parameters

are: N=2048, εx(0)/εy(0)=30/10 mm mrad νx0=5 (left), νx0=8 (center), νx0=9 (right), νy0=6.21. The colors

refer to different values of the perveance defined by assigning the value of the depressed vertical tunes:

νy/νy0=0.8 (red), νy/νy0=0.7 (green), νy/νy0=0.6 (blue).

3 The momentum jumps

Landau’s theory assumes that the collisions are binary, soft and frequent. The analysis of the time series
for the momentum jumps obtained by a very accurate integration of the equations of motion in order
to resolve the hard collisions shows significant deviations with respect to the previous hypothesis. The
momentum jumps are obtained after subtracting the mean field motion in the interval ∆s, see [4]

∆pk = p(sk) − p(sk−1) + ω2r(sk−1)∆s .

The relevant feature is that in the p.d.f. of the momentum jumps a slowly decaying queue is present due
to the rare hard collisions. The distribution can be fitted by a Student distribution Σ(3) (see figure 3)

ρ Stud (∆p, β) =
1

π

∫

∞

0
cos(u∆p)e−uβ(1 + u)βdu '

2β

π

1

(∆p)4
for ∆p → ∞ .
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Figure 3. Horizontal component of momentum jumps ∆px: time series of the jumps (left), histogram

of the momentum jumps and fit with the Student’s distribution (center left). Plot of ρ Stud ×π/2 for β=1

(center right). Plot of log[ ρ Stud ×π/2 ] versus log ∆q (right).

The p.d.f. decays algebraically with the fourth power and has a finite variance. As a consequence the
central theorem applies. However approximating the process with a Wiener noise is rather crude, since
the contribution of the hard collisions is lost. The behaviour for ∆p → 0 is a Gaussian whose variance
σ can be analytically estimated according to σ2 = 1

2ρs(r)ξ
2N−1 log N . Another relevant parameter is

the decorrelation time (∆t) dec ∝ `/v rel ∝ (Nρs(r))
−1/2 v−1

rel
. We propose to approximate the effect

of collisions with a stochastic process whose p.d.f. is the observed one. The mean field dynamics is
described by a PIC code, which solves the Poisson-Vlasov, with the desired accuracy provided that the
number of pseudoparticles is large enough. The time step (∆t) PIC can be chosen much larger than the
∆t used in the microscopic simulations. Letting n = (∆t) PIC /(∆t) dec , the momentum change to be
inserted in the PIC simulations is (∆p) PIC = (∆p1 + . . .+∆pn)(∆t) dec /∆t, where ∆pk are chosen
randomly according to the Student’s distribution. In order to preserve the kinetic energy, the momentum
is renormalized according to p′

i = C(pi + ∆pi) where C2 =
∑n

i=1(p + ∆pi)
2/

∑n
i=1 p2. With this

choice the relaxation and equipartition processes observed in the microscopic model are well reproduced.
An alternative is to write the Fokker-Planck-Poisson-Vlasov equation including a Student’s noise, impos-
ing an Einstein-like relation between drift and diffusion coefficients in order to preserve the second order
moments. The integro-differential equations for the p.d.f, typical of Levy flights, render this approach
quite involved.

4 The mean fields limit

A consequence of the scaling law for the relaxation time τ ∝ N , is that in the limit N → ∞ the mean
field theory is recovered. This limit has been recently proved in a completely rigorous framework [5].
In the periodic focusing case no stationary limit distribution exists, nor any rigorous result proving that
the mean field theory is recovered as N → ∞ is available at present. However there is strong numerical
evidence that this is the case. The collisional model for N large (≥ 104) and a PIC code with a large
number of pseudoparticles (≥ 106) give the same results within 1% for hundreds of betatron periods. In
this case since the hard collisions need not to be resolved the time step requirements can be relaxed and
the ”collisional code” can be used to explore the collective effects just as a PIC code. Other consistency
checks come from the analysis of collective instabilities. To this end an analytic approach based on the
equations of moments for the linearized Poisson-Vlasov equations has been developed. The equations
for the moments of order k couple only to the lower order moments and read

dµ

ds
= A(s)µ(s) A(s + L) = A(s)

where µ is the moments vector. The matrix A(s) is determined analytically and the eigenvalues of
the monodromy matrix M = X(L), where X(s) is the fundamental matrix, determine the stability
condition. The agreement in the emittance growth rate between predictions of the moments theory and
PIC simulations is good (see [3]).
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