LHC Luminosity Upgrades Using Quadrupoles

> Peter Limon October 17, 2006

Outline

- The options for luminosity upgrades using modified or additional quadrupoles
 - We are not talking about dipoles(except a bit)
 - We are not talking about increases in beam current
- The challenges
 - For the experiments
 - For the collider & magnets
- Some issues and possibilities
- The next steps in R&D
- Conclusions

- Reproduce the present optics with stronger, and/or longer, and/or larger-aperture triplets
- Same as above with triplets moved closer to the interaction region
- Additional quadrupoles in front of the existing, modified inner triplet
- All of these options can, <u>by themselves</u>, increase the luminosity by about a factor of 1.5 to 2

Issues

• There are two basic issues for the experiments

- Displacement, interference with, or elimination of parts of the detectors
- Scattering and albedo of particles into the detectors
- There are three basic issues for the LHC
 - Developing and building magnets that reach the performance goals
 - Field strength & quality, aperture, radiation hardness, reliability...
 - Reducing or removing the heat deposited by the interaction debris
 - The effects on the parameters and performance of the LHC
- There are two basic issues in common
 - A design that permits the detectors to open for service or modifications
 - Implementing stable mechanical support and cryogenic and electrical services for the magnets

Larger-Aperture Triplet

• Advantages

- Preserves present or similar optics
- Larger aperture and/or stronger, allowing more shielding and smaller β^*
- If one uses Nb3Sn, the increased temperature margin will permit a significant increase in luminosity, > factor 3
- Preserves the decoupling of detector and LHC spaces

• Disadvantages

- Potentially fatal heating from debris. Must understand the debris effects
 - Requires the success of Nb3Sn magnet R&D
- Decrease in β^* is factor of two, but increase in luminosity due to β^* is less
- Larger β max, resulting in large chromaticity that may be difficult to compensate.
 - This is worse if magnets are longer (i.e. NbTi).

Magnet Challenges (1)

- The requirements for quadrupoles that significantly increase luminosity appear feasible but not easy
 - Gradient requirement is not much greater than the present quads, but increased aperture makes the peak field high
 - Heating due to the interaction debris must be removed
 - Nb3Sn has greater temperature margin and higher field capability
- **R&D** is progressing on Nb3Sn quadrupoles
 - In the U.S. DOE labs (LARP)
 - In Europe (CARE/NED)
 - In Japan (Nb3AL?)

Nb3Sn or NbTi?

- Which technology?
- The answer is-----It depends!
- If the goal is to reach nominal or slightly more
 - NbTi is probably adequate, but some increases might be possible without any magnet changes at all.
- If the goal is to increase luminosity by factor of 2 or more
 - Nb3Sn (or Nb3Al or HTS or MgB2) will be necessary
 - The most important (but not the only) factor is heating from interaction debris

7

Beam Losses in Inner Triplet

From N. Mokhov

P. Limon --- LHC Luminosity Upgrades with Quadrupoles October 17, 2006

8

Temperature Margin

- Based on realistic construction models at 1 x 10³⁴
 - I.e. Potted Nb3Sn coils; st.st collars; iron yoke

U.S.-LARP Nb3Sn R&D

• Initial goals(TQ) of the LARP R&D:

- Gradient \geq 200 T/m
- Aperture \ge 90 mm
- Radiation resistant
- Long prototype (L \ge 4 m) by 2009
- Eventual goals(HQ):
 - Peak field \geq 15 T
 - Aperture $\geq 100 \text{ mm}$
 - (G \ge 250 T/m (*a*) d \ge 100 mm)
- Presently two designs are being pursued
 - Collared coil
 - Bladder & Key
- Initial models of each have been built and tested

LARP Nb3Sn Magnet R&D

• Both magnets achieved gradients close to 200 T/m (TQ objective), but improvement is necessary.

Gaining Small Factors (1)

- There are a number of options that do not involve major modifications or new magnets
 - Increase the bunch spacing
 - This by itself increases the luminosity
 - Decreases electron cloud and long-range beam-beam effects
 - Decrease the collision angle
 - This may be possible if the current is low or if we go to fewer bunches
 - Remove the beam-tube liner in the inner triplet
 - This could be effective if physical aperture is a limit to β^*
 - Fewer bunches moderate the electron cloud effects
 - There are surely others

Gaining Small Factors (2)

- Can the efficiency for data-taking be increased?
 - The integrated luminosity per year is projected to be between 60 - 100 fb⁻¹
 - At a peak luminosity of 1×10^{34} , 100 fb⁻¹ /yr corresponds to ~1.6 $\times 10^7$ s/yr, which would be phenomenal performance
 - Fermilab, for example, regularly attains $\geq 1 \ge 1 \ge 10^7$ s/yr of data taking, but not much more

Moving the Triplet Closer

- An upgraded triplet, similar to the previous example, is moved closer to the IP
 - There is improvement for each meter that the triplet is closer, down to ~ 13 m from the IP
- Advantages
 - $-\beta$ max is smaller, has less effect on chromaticity and aperture can be smaller
- Disadvantages
 - Potentially more heating from debris
 - Quads are long and strong, and therefore see lots of debris
 - Requires the success of Nb3Sn R&D
 - Impinges (somewhat) on the detectors
 - May require a "thin-quad" design depending on how close to the IP
 - Small-aperture TAS is also closer, generating more albedo; one may be able to redesign the TAS if the magnet aperture is greater
 - May require a new support structure for magnets and shielding

Pay Attention to the Support Structure

Quads in Front of Triplet

- A doublet is inserted between the triplet and the IP, starting about 12 m from the IP "Q0"
- Advantages
 - $-\beta$ max is smaller magnet apertures of doublet & triplet may be smaller
 - Less effect on chromaticity
 - Less debris heating because quads are shorter and weaker MAYBE
- Disadvantages
 - Will require the success of the Nb3Sn R&D
 - Impinges on the detectors
 - Requires a "thin-quad" design
 - Requires a TAS, but may be simple and large aperture.
 - Requires a new support system for magnets and shielding

Quads in Front of Triplet

P. Limon --- LHC Luminosity Upgrades with Quadrupoles October 17, 2006

17

Q0

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

ATLAS

Location of Forward Quads in ATLAS

CMS

Magnet Challenges (2)

- Close-in magnets are probably not a major magnet challenge for the quadrupole plans considered, provided that the Nb3Sn R&D is successful
 - This may not be true for very close-in dipoles, particularly for CMS
 - Not only field strength, but also forces and torques, and the disturbance of the analysis field
 - Pay attention to the interaction of unshielded magnets with neighboring iron?
 - Do we want very large aperture for close-in quads? What about dense shielding coexisting with cryogenics and cryostat?

Some Issues

• Lots of mechanical issues

- Have to support the quads in the forward position.
- Quads have to permit opening of the detector
 - I.e. Outer diameter less than $\sim 45 50$ cm
 - This seems possible, but there will be minimal iron to reduce fringe field and interaction with surrounding steel
- Have to remove heat due to interaction debris
- What about pipes & valves? Need details

Coaxial Cooling

- Coaxial cooling design based on Tevatron
- Tevatron quadrupole
 - ~100 T/m with old-style
 NbTi. New NbTi could
 reach 150 T/m
 - 77 mm coil aperture is more than adequate
 - Heat transfer and cooling must be redesigned
 - Outer diameter of cryostat is 20 cm

Coaxial Cooling for Q0

- Coil aperture = 70 mm
 - 10 mm liner
 - 45 mm physical aperture

• Outer diameter=300 mm

- 20 mm coil thickness
- 20 mm collar thickness
- 20 mm vacuum space including intermediate thermal shield
- 40 mm low-pressure helium
- Pressure-vessel cylinder
 - laminated from copper and stainless bimetallic sheets

P. Limon --- LHC Luminosity Upgrades with Quadrupoles

Material for Special Pressure Vessel Tube

Close-in Dipole

- Dipole begins as close as possible to IP ~ 3.5 m
 - It is in a strong magnetic field, especially in CMS
 - Forces, torques, field disturbance, quench forces...
 - Can it be made with a large aperture?
 - Yes. There appears to be room to make a 4T 6T dipole with a 30 cm bore diameter (No outside iron)
 - What about the interaction debris?
 - It may not be so bad. Since it has large aperture, the cold mass is at low η (large angle), so flux is reduced.
 - What about albedo
 - Don't know. Large aperture increases magnetic albedo.

CMS

Next Steps in the R&D

- A list of R&D topics
 - Continue & expand Nb3Sn magnet R&D
 - Model quads
 - Long quadrupoles
 - More Nb3Sn magnet R&D
 - Even more aggressive Nb3Sn magnet R&D
 - What else?
 - Much more work on energy deposition & cooling
 - Support structure, alignment techniques, etc.
 - Etc.
 - Lots of detector R&D

CONCLUSIONS

- The magnets themselves are not impossible
 - $-\,$ However, they rely on the success of Nb3Sn R&D
- The solution lies in optimizing a complex set of parameters
 - Useful luminosity, effect on the LHC performance and so forth.
 - Some of the problems are difficult. We should begin the R&D soon. We need to define some boundaries.
- We need to establish <u>regular</u> and useful lines of communication among, AT, AB, LARP and the experiments. We need to do this soon!
- There is a need for more magnet R&D in more places