

Space Charge Issues and EC Issues

G. Franchetti, GSI Lumi-06, Valencia

Space charge issues

Impact on SIS100

EC incoherent effects

The next generation of computational challenges at FAIR

Primary Beam Intensity	x 100-1000							
Secondary Beam Intensity	x 10 000							
Heavy Ion Beam Energy	x 30							

- New: Cooled pbar Beams (15 GeV)
- Intense Cooled Radioactive Beams
- Parallel Operation

SIS100 critical scenario

Required Intensity in SIS18 Booster (after acceleration)

 $1.5 \times 10^{11} U^{28+}$ -ions /cycle

Required Intensity in SIS100

 6×10^{11} U²⁸⁺ -ions /cycle

Low charge states beams provide higher intensities but have shorter life time

Requirements on Beam Loss

The SIS100 Challenges

Storage time 10^5 turns Intensity 0.75×10^{11} /ions U⁺²⁸ Space charge tune-shift $\Delta Q \sim 0.2$ SIS100 has SC dipoles --> Nonlinearities

Beam loss prediction Localization of beam loss Emittance increase prediction

6

SPACE CHARGE ISSUES

- Montague
- Linear coupling in presence of space charge
- Periodic crossing of resonance via space charge
- The effect of the chromaticity
- The effect of the self-consistency

Montague Studies

E. Metral, M.Giovannozzi, M.Martini, R.Steerenberg, G.Franchetti, I.Hofmann EPAC04

This resonance is critical because difficult to compensate

8

Space charge and Linear Coupling

When linear coupling is present in the ring and Qx, Qy satisfies the condition Qx + Qy = N, the beam emittances are periodically exchanged

10/20/06

G. Franchetti

Synchrotron motion and trapping

Space charge control the islands

Emittance evolution in a full bunch

SIS18 (full AG lattice) Q_s = 10^{-3} 10⁵ turns

10³ macroparticles

In **SIMPSONS** (S. Machida) the longitudinal dynamics Is nonlinear

In **MICROMAP** (G.Franchetti) the longitudinal dynamics Is linear

Excellent Agreement !! (on 10⁵ turns)

G. Franchetti, I. Hofmann, S. Machida HB2006

http://www-linux.gsi.de/~giuliano/research_activity/trapping_benchmarking/main.html

Code-Code Benchmarking

The Effect of Chromaticity

Simulation for CERN-PS Experiment

Modeling-Experiment Benchmarking

G.Franchetti, I.Hofmann, M.Giovannozzi, E.Metral, M.Martini

Maximum beam loss do not match measurements

14

10/20/06

SIS100: The working point for standard operations

I = 640A

No random errors

Qx = 18.84, Qy = 18.73

Maximum Emittances (Er=2.5)

Ax = 97.5 mm-mrad Ay = 39 mm-mrad

Nonlinear Acceptance For 1000 turns

Ax = 78 mm-mrad Ay = 31.2 mm-mrad

Aperture limmiting insertion are included

SIS100: Pessimistic Case

92.5 $\Delta Q_x = 0.14, \Delta Q_v = 0.25$ $\varepsilon_x = 78 (2\sigma) \text{ mm-mrad}$ 85 $\varepsilon_v = 31 (2\sigma) \text{ mm-mrad}$ 82.5 80 Bunch length (rms) = 27 m 77.5 **Distribution WB** 2080 1004060 x1000 turns

~23% beam loss due to space charge And Lattice nonlinear components

Not acceptable

16

SIS100: Target Beam

 $\Delta Q_x = 0.14, \Delta Q_y = 0.25$ $\varepsilon_x = 35 (2\sigma) \text{ mm-mrad}$ $\varepsilon_y = 14 (2\sigma) \text{ mm-mrad}$ N _{bunch} = 0.75 x 10¹¹ Bunch length (rms) = 27 m Distribution **WB**

No beam loss Found in present Simulations with The actual ring modeling

SIS100: Gaussian Beam

Further Issues

Beam Modeling

Effect of closed orbit distortions Errors Injection at injections Effect of intrabeam scattering

Self adjustment Of the beam some Tail may develop

Gaussian Beam ??

Collimation Issue

Effect of **dE/dx** or **multiple scattering** On the dynamics of single particle in Resonant nonlinear regime

Relevance of the self-consistency

Effect of beam loss

The result on long term beam loss are sensitive To the modeling on how new particles are drawn Close the resonance.

ISSUES: better modeling and further Experiment-code Benchmarching

Including the effect of beam loss

Self-consistency important on how many particles are pushed into the resonance

Benchmarking / Validation Essential for Design (high confidence)

Benchmarking Experiments @ GSI

Experiment S317

- 4 Measurement campaign starting from December 2006.
- 24 shifts of beam

Controlled highly resolved measurement data will be available for benchmarking codes, on emittance growth and beam loss perdition

									Scheduling																						
Block 4 / 2006									December 2006											Schedule as of 12-Oct-2006											
Week 48 Week 49										w	eek	50					w	eek	51				Week 52								
1 2 3	4	5	6	7	8	9	10	11	12	13 14 15 16 17			18 19 20 21			22 23 24			25 29	26	27	28	29	30	31						
a)	U2 4 Me1 1n	217, Block, 40Ar, 4.5 eV/u, 1 puA, 1ms,5Hz Y7			/	U217, Block, 48Ca / ECR, 3.4 4.0 MeV/u, 1 puA, Y7 - SHIPTRAP					в																				
UBIO, Scholz/Scholz, C, 11.4 MeV, 2 TnA, 50Hz, 5					c)					UBIO, Scholz/Scholz, U, 11.4 MeV, 2 TnA, X6																					
			115. A	7																											
Therapy, Habe	erer, 1	2C (E	CR),	нтм		d)		S30	0, Br spill	uce/G lat lo	ierl, U ng ex	-238, tracti	750, i on, S	nax, 4	S000 exp) mao erim	chine ents														
S294, J. Benlliure/KH. Schmitt, 238U, 950 MeV/u,2e10/spill, 10 s extraction, FRS g) f)						S30 (P	S302, Mintsev/Varentsov, 238U73+ (PIG), 300-400 MeV/u, 5e9/spill, fast extraction, bunch compression, SIS cooler, HHT																								
								E0 M	45, S leV/u decel MeV/	toehli , 1e8 i eratic u, ES	ehlker, U91+, U92+, 350 e8 in ESR, SIS cooler, ation in ESR to 20-50 ESR electron cooler																				
								SM 15	IAT, 1 0 Me	Frautr V/u, 3	nann/ e8 ion	Traut is/spi	manr II, -, F	, U, ITA																	

a)UMAT, Trautmann/Trautmann Christina, 238U, 11.4 MeV/u, 10 nA, 5ms, 50Hz, (if possible), X0 b) U221, Braeuning-Demian/Mann, 238U, 5 MeV/u bis 11.4 MeV/u, <5Hz, 1ms, X4

c) U226, Roth/Blazevic, Ar, 11.4, 250 pnA, Z6

Hofmann/Franchetti, Ar, 11.4 MeV/u, SIS18 injection energy, maximum intensity (space charge limit), day only, SIS/UNILAC S249, Golubev/Mustafin, Ar, 1600 MeV/u, 1e7/spill SIS, days only HTA

f) E070, Moshammer/Hagmann, He-like Xe to U, 100 -400AMeV, 1e8/spill, SIS cooler, ESR jet targ

g) S223, Suemmerer/Aumann, 12C, 500, 1E3/spill, slow extraction, days only, HTC

varz. Phone +49-6159-712765. Fax +49-6159-713762. E-mail beamtime@gsi.de

E-Cloud vs. Space Charge

http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/e-cloud-incoherent-effects.htm

Correlation EC-density - position along the bunch

Space charge - EC detuning

Dynamics of tunes

Correlation lost particlesvs. Bunch shortening

Correlation beam loss vs.. Bunch shortening

PS experiment and SPS bunch shortening

SPS measurements

PS experiment

E-Cloud incoherent effects

Code-simplified-model benchmarking

Periodic crossing of resonances and **particle trapping Induced by EC pinch**

Conclusion / Outlook

Space charge plays an important role for emittance Growth and beam loss

A new mechanism for beam loss in high intensity has been found which gives good quantitative explanation the experimental results

Present simulation for SIS100 shown that beam loss~ 4% are expected: further effect should be included

In the framework of the HHH meetings a synergy Between space charge studies and EC-studies has began on the incoherent EC effects.