

Evaluation of Radiation Dose from Powder and Bulk Hydroxyapatite for Routine Dosimeter

Presented by

Ms. Kanokwan Boonsook

Date: 8 June, 2016

Department of Physics, Faculty of Science King Mongkut's University of Technology Thonburi

Outlines

Introduction

Ref: http://themissionlsc.com/human-skeleton-diagram.html

Bone

Functions of the bone

- ✓ Framework for support and movement
- ✓ Protection
- ✓ Storage of minerals
- ✓ Production of blood cells

Composition of bone

Bone structure

35% Organic

- ➤ 28% collagen
- > 5% protein

65% Inorganic (hydroxyapatite)

Mostly Calcium and inorganic orthophosphate deposited between collagen

Calcium Phosphate

Bone fractures

Types of fractures

Traumatic fracture (cause by an injury)
 Spontaneous fracture (cause by a disease)

Medical Technology

Calcium supplement

Glucosamine

Bone replacement material

Bioceramic material

- Bioresorbable ceramic
- Bioinert ceramic
- Bioactive ceramic

"Hydroxyapatite"

Effect of radiation

In the future, the patients who had been treated with bone replacement with implanted bones from hydroxyapatite may be work about radiation or diagnose and radiotherapy by radiation. Then, hydroxyapatite from synthesis must be investigate the effect of radiation on hydroxyapatite.

- 1. To study characteristic ESR signal on hydroxyapatite synthesized from quail eggshell before and after gamma irradiation.
- 2. To evaluate gamma radiation dose response on hydroxyapatite synthesized from quail eggshell.
- 3. To study fading time on hydroxyapatite synthesized from quail eggshell after irradiation.

Experiment : Sample Preparation

Experiment : Characterization

Hydroxyapatite

 Quail eggshell hydroxyapatite (QS-HAp)

Results

 Characteristic of ESR signal
 Ionizing Radiation - induced
 free radicals

0.5 cm

0.065 g

pellet mold

Hydraulic hand pump

Results

Dose response

Fading time

post-irradiation fading affects the attainment of high accuracy in dosimetry measurements

Irradiation

Gamma ray

Varies dose 0.1 - 10.0 kGy

Electron spin resonance spectroscopy

Results & discussion

Characteristic ESR signal of HAp

Fig.1 ESR signal QS-HAp before and after gamma irradiation

The new paramagnetic center in HAp was found. Its formation is assigned to the features of HAp synthesis in the aqueous solution, the free electron of HAp that formed by gamma irradiation interacts with the four photons of the four water molecules during its motion circular trajectory

Dose response of hydroxyapatite

Table.1 Intensity of ESR signal on powderhydroxyapatite dose range 0.1 -10 kGy

	Dose (kGy)	Intensity (a.u.)	
	0.1	149878.14	
	0.2	415871.08	
	0.4	786674.61	
	0.8	870261.05	
	1.0	1153782.04	
	2.0	2797915.03	
	4.0	5253393.26	
	8.0	8608628.43	
	10.0	10999885.25	
		\frown	
ESR Intensity (a.u.)	345 35		,
	Poak-to r	hagnetic field (mT)	
	reak-lu-	JEaN IIILEIISILY	

Fig.3 Effect of the radiation dose of powder QS-HAp irradiated with γ radiation at various dose

Part 2-1 : Powder QS-HAp (linear function.)

Dose response of hydroxyapatite

Table 2. Comparison of radiation dose of powderQS-HAp

Irradiation dose (kGy)	Dose from calibration curve (kGy)	%error
0.1	-0.121	-
0.2	0.145	27.566
0.4	0.516	28.918
0.8	0.599	25.093
1.0	0.883	11.722
2.0	2.527	26.346
4.0	4.982	24.560
8.0	8.338	4.220
10.0	10.729	7.289

Fig.4 Dose response curve of powder QS-HAp irradiated with γ radiation at room temperature

Dose response of hydroxyapatite

Electron spin resonance spectroscopy

Table.3 Intensity of ESR signal on bulkhydroxyapatite dose range 0.1 -10 kGy

	Dose (kGy)	Intensity (a.u.)
	0.1	191816.58
	0.2	452538.87
	0.4	743780.43
	0.8	1469312.06
	1.0	1573107.97
	2.0	2944184.86
	4.0	4601256.67
	8.0	7003901.69
	10.0	7989371.00
_		\frown
		H

Fig.5 Effect of the radiation dose of bulk QS-HAp irradiated with γ radiation at various dose

Peak-to-peak intensity

345

Part 2-2 : Bulk QS-HAp (linear function.)

Dose response of hydroxyapatite

Table 4. Comparison of radiation dose of bulkQS-HAp

Irradiation dose (kGy)	Dose from calibration curve (kGy)	%error
0.1	-0.657	-
0.2	-0.322	-
0.4	0.051	87.118
0.8	0.983	22.901
1.0	1.117	11.650
2.0	2.877	43.858
4.0	5.005	25.127
8.0	8.090	1.130
10.0	9.356	6.441

Fig.6 Dose response curve of bulk QS-HAp irradiated with γ radiation at room temperature (linear function)

Part 2-2 : Bulk QS-HAp (polynomial function.)

Fig.7 Dose response curve of bulk QS-HAp irradiated with γ radiation at room temperature (polynomial function)

Dose response of hydroxyapatite

Table 5. Comparison of radiation dose of bulkQS-HAp

Irradiation dose (kGy)	Dose from calibration curve (kGy)	%error
0.1	-0.073	-
0.2	0.190	5.181
0.4	0.493	23.162
0.8	1.301	62.585
1.0	1.424	42.353
2.0	3.299	64.937
4.0	7.800	94.998
8.0	-	-
10.0	-	-

Dose response of hydroxyapatite

Part 2-2 : Bulk QS-HAp (polynomial function.)

Table.6 Intensity of ESR signal on QS-HApdose range 0.1 -10 kGy

Part 2-2 : Bulk QS-HAp (polynomial function.)

Fig.8 Dose response curve of bulk QS-HAp irradiated with γ radiation at dose 0.1 – 2 kGy

Dose response of hydroxyapatite

Table 7. Comparison of radiation dose of QS-HAp

Irradiation dose (kGy)	Dose from calibration curve (kGy)	%error
0.2	0.198	0.940
0.4	0.351	12.290
0.8	0.751	6.134
1.0	0.811	18.926
2.0	1.679	16.028

Dose response of hydroxyapatite

Conclusions

Samples	Туре	Optimum range (kGy)	Function	Equation	R ²	Maximum error
QS-HAp	powder	0.1 - 10.0	linear	y = 1000000x + 271003	0.9933	28.92%
QS-HAp	bulk	0.2 – 2.0	polynomial	y = -169348x ² + 2000000x + 62947	0.9956	18.93%

Fading on hydroxyapatite

Part 3-3 : QS-HAp

Fig.9 Fading of ESR signal intensity of (a) powder and (b) bulk hydroxyapatite irradiated at 1 kGy

Fig.10 Percentage ESR signal intensity as a function of storage time for (a) powder and (b) bulk hydroxyapatite irradiated at 1 kGy

Conclusions

- 1. Gamma radiation induced carbonate radicals with a center g-factor of 2.0020 and indicated that hydroxyapatite from quail eggshell has characteristic and properties similar to hydroxyapatite in bone or tooth human.
- 2. Powder and bulk hydroxyapatite from quail eggshell could be used the best dosimeter in the range of 0.1 10.0 kGy and 0.2 2.0 kGy, respectively.
- 3. Hydroxyapatite from quail eggshell can use to be a dosimeter for routine dosimetry.

Negron-Mendoza, A., Uribe M., R., Ramos-Bernal, S., Camargo-Raya, C., Gomez-Vidales, V. and Kobayashi, K., (2015), "Calcium carbonate as a possible dosimeter for high irradiation doses", **Applied Radiation and Isotopes**, Vol.100, pp.55-59.

Rokhmistrov, D.V., Nikolov, O.T., Gorobchenko, O.A. and Loza, K.I., 2012, "Study of structure of calcium phosphate materials by means of electron spin resonance", **Applied Radiation and Isotopes**, Vol.70, pp.2621-2626.

Da Costa, Z.M., Pomtuschka, W.M., Ludwig, V., Giehl, J.M., Da Costa, C.R. and Duarte, E.L., 2007, "A Study based on ESR, XRD and SEM of Signal Induced by Gamma Irradiation in Eggshell", **Radiation Measurements**, Vol.42, pp.1233-1236.

Engin, B. and Demirtas. H., 2004, "The Use of ESR Spectroscopy for the Investigation of Dosimetric Properties of Egg Shells", **Radiation Physics and Chemistry**, Vol.71, pp.1113-1123.

Da Costa, Z.M., Pomtuschka, W.M. and Campos, L.L., 2004, "Study of the ESR Signal of Gamma Irradiated Hydroxyapatite for Dose Assessment" **Nuclear Instruments and Methods in Physics Research B**, Vol.218, pp.283-288.

THANK YOU for your *a*ttention!