

Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States

Burin Asavapibhop, <u>Gurpreet Singh Chahal</u>*, Narumon Suwonjandee Chulalongkorn University, Thailand

Siam Physics Congress - 2016

June 8, 2016

Outline

Physics motivations

The CMS detector

• Z' search in a Nutshell

Results: exclusion upper limits at 13 TeV

Summary

Physics Motivations

- The Standard Model (SM) is a successful theory supported by many experimental evidences, e.g. Higgs boson discovery, etc.
- SM has some omissions: hierarchy problem, absence of gravity, lack of dark matter...
- Many theories beyond the SM address these omissions
 - Predict new massive particles, heavy Z' gauge bosons (motivation to search for dilepton resonances)

The CMS Detector

Z' Search in a Nutshell

- Signal: clean signature of two same flavour high- p_T leptons
 - Triggers used: HLT_Mu50 and HLT_DoubleEle33
 - Well isolated leptons from same primary vertex making µµ or ee pair
 - Muons: $p_T > 53 \text{ GeV}$, $|\eta| < 2.4$
 - Electrons: $E_T > 35$ GeV, $|\eta| < 1.4442$ or $1.566 < |\eta| < 2.5$
 - Backgrounds: irreducible Z/γ^* , reducible ttbar, tW and diboson, jet backgrounds, cosmic rays
- Strategy: search for a localised excess in m_{\parallel} spectrum, up to 5 TeV
- Three width scenarios: 0%, 0.6% (Z'_{ψ}) and 3% (Z'_{SSM})

Key Points

- Precise measurement of lepton energy, momentum scale and mass resolution
 - Huge dependence on detector alignment for high p_T leptons
- Good understanding of the acceptance x efficiency of high p_T leptons
- Rely on simulations for evaluating the background shape, the mass resolution at high masses, and selection efficiencies

Dilepton Invariant Mass

Highest mass events observed in data

- Muon 2.4 TeV
- Electron 2.9 TeV

CMS PAS EXO-15-005

Dimuon Event @ 13 TeV

Exclusion Upper Limits @ 13 TeV

channel	Z'_{ψ}		\mathbf{Z}_{SSM}'	
	obs (TeV)	expected (TeV)	obs (TeV)	expected (TeV)
ee	2.40	2.45	2.75	2.95
$\mu^+\mu^-$	2.40	2.55	3.00	3.05
$ee+\mu^+\mu^-$	2.60	2.80	3.15	3.35

CMS PAS EXO-15-005

Already surpassed the current best published limits at 8 TeV data (20.6 fb⁻¹)

• Exclusion for Z'_{SMM} up to 2.9 TeV and Z'_{ψ} up to 2.57 TeV

Summary

- Search for a new massive gauge boson (Z') decaying to ee or µµ final state has been performed, and results are presented
- Analysis performed using 2.6 fb⁻¹ (Z' \rightarrow ee) and 2.8 fb⁻¹ (Z' \rightarrow µµ) @ 13 TeV
- No significant excess over the standard model backgrounds prediction has been observed
- Limits have been derived for Z'_{SSM} and Z'_{ψ} models
 - Mass range less than 3.15(2.60) TeV has been excluded for $Z'_{SSM}(Z'_{\psi})$ models

Acknowledgments

- This research is supported by Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University
- Department of Physics, Faculty of Science, Chulalongkorn University for financial support
- "CUniverse" research promotion project by Chulalongkorn University
- CMS collaboration, in particular, our Exotica/Zprime colleagues
- All SPC 2016 staffs for organizing this event

Backup

Transverse Slice Through CMS

- 85 % 90 % efficiency for collecting LHC delivered data
- High efficiency and resolution in object (e, μ, tau etc.) reconstruction
- The CMS detector provides good tracking and particle ID all around the interaction point (0 < ϕ < 2π , | η | < 3)

Z' ee Event Selection

- High energy electron pairs (HEEP) selection is used
- Cut-based selection designed to be highly efficient at high E_T
- Events categories: Barrel-Barrel (BB) or Barrel-Endcap (BE)
- The highest mass pair M_{ee} is selected

Variable	Barrel	Endcap	
E_{T}	> 35 GeV	> 35 GeV	
range	$ \eta_{sc} < 1.4442$	$1.566 < \eta_c < 2.5$	
isEcalDriven	=1	=1	
$ \Delta \eta_{\rm in}^{ m seed} $	< 0.004	< 0.006	
$ \Delta \Phi_{\rm in} $	< 0.06	< 0.06	
H/E	<1/E + 0.05	< 5/E + 0.05	
$\sigma_{i,i}$	n/a	<0.03	
E^{2x5}/E^{5x5}	>0.94 OR $E^{1x5}/E^{5x5} > 0.83$	n/a	
EM + Had Depth 1 Isolation	<2+0.03*Et +0.28*rho	<2.5 +0.28*rho for Et<50 else	
		<2.5+0.03*(Et-50) +0.28*rho	
Track Isol: Trk Pt	<5	<5	
Inner Layer Lost Hits	<=1	<=1	
ldxyl	< 0.02	<0.05	

The total efficiency to trigger, reconstruct, and select a 1 TeV electron pair within the detector acceptance is predicted by the Monte Carlo simulation to be 75 \pm 8% for barrel- barrel and 70 \pm 10% for barrel-endcap electron pairs

Z' → μμ Event Selection

Muon Selection

- Global muon and Tracker Muon
- $N_{\text{(muon hits)}} > 0$; and $N_{\text{(muon stations)}} > 1$
- d_{xy} wrt PV < 2 mm; and $N_{(pixel hits)} > 0$
- $N_{\text{(tracker lavers)}} > 5$; and $\delta p_T/p_T < 0.3$
- Tracker Iso ($\Delta R=0.3$) < 0.1; and $p_T > 53$ GeV

DiMuon and Event Selection

- good offline-reconstructed PV, opposite-sign muons
- χ^2 /d.o.f. of a common vertex fit < 20
- 3D opening angle α between the two muons momenta < (π 0.02) rad
- One of the muons matched within $\Delta R < 0.2$ to the HLT_Mu50 muon candidate

The total efficiency to trigger, reconstruct, and select a 1 TeV muon pair within the detector acceptance is predicted by the Monte Carlo simulation to be 89^{+11%}_{-14%}