Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States

Burin Asavapibhop, Gurpreet Singh Chahal*, Narumon Suwonjandee
Chulalongkorn University, Thailand

Siam Physics Congress - 2016
June 8, 2016

*Gurpreet.Singh@cern.ch
Outline

• Physics motivations

• The CMS detector

• Z’ search in a Nutshell

• Results: exclusion upper limits at 13 TeV

• Summary
• The Standard Model (SM) is a successful theory supported by many experimental evidences, e.g. Higgs boson discovery, etc.

• SM has some omissions: hierarchy problem, absence of gravity, lack of dark matter . . .

• Many theories beyond the SM address these omissions
 • Predict new massive particles, heavy Z’ gauge bosons (motivation to search for dilepton resonances)

[Graph showing ratios of LHC parton luminosities: 13 TeV / 8 TeV]

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

$M_{Z'} = 3$ TeV
The CMS Detector

Total weight: 14000 t
Overall diameter: 15 m
Overall length: 21 m

ECAL: 76k scintillating PbWO_4 crystals
HCAL: Scintillator/brass Interleaved ~7k ch

3.8T Solenoid

MUON ENDCAPS
473 Cathode Strip Chambers (CSC)
432 Resistive Plate Chambers (RPC)

IRON YOKE
Preshower
Si Strips ~16 m^2 ~137k ch

Foward Cal
Steel + quartz Fibers ~k ch

Pixel Tracker
ECAL
HCAL
Muons
Solenoid coil

Pixels & Tracker
- Pixels (100x150 μm^2)
 ~ 1 m^2 ~66M ch
- Si Strips (80-180 μm)
 ~200 m^2 ~9.6M ch

MUON BARREL
250 Drift Tubes (DT) and
480 Resistive Plate Chambers (RPC)
Z’ Search in a Nutshell

• **Signal:** clean signature of two same flavour high-\(p_T \) leptons
 • Triggers used: HLT_Mu50 and HLT_DoubleEle33
 • Well isolated leptons from same primary vertex making \(\mu\mu \) or \(ee \) pair
 • **Muons:** \(p_T > 53 \) GeV, \(|\eta| < 2.4\)
 • **Electrons:** \(E_T > 35 \) GeV, \(|\eta| < 1.4442 \) or \(1.566 < |\eta| < 2.5 \)
 • **Backgrounds:** irreducible \(Z/\gamma^* \), reducible \(tt\bar{t} \), \(tW \) and diboson, jet backgrounds, cosmic rays
• **Strategy:** search for a localised excess in \(m_{\ell\ell} \) spectrum, up to 5 TeV
• **Three width scenarios:** 0%, 0.6% (\(Z'_{\psi} \)) and 3% (\(Z'_{SSM} \))

Key Points
• Precise measurement of lepton energy, momentum scale and mass resolution
 • Huge dependence on detector alignment for high \(p_T \) leptons
 • Good understanding of the acceptance x efficiency of high \(p_T \) leptons
• Rely on simulations for evaluating the background shape, the mass resolution at high masses, and selection efficiencies
Dilepton Invariant Mass

Highest mass events observed in data
- Muon - 2.4 TeV
- Electron - 2.9 TeV

CMS PAS EXO-15-005
Dimuon Event @ 13 TeV
Already surpassed the current best published limits at 8 TeV data (20.6 fb⁻¹)

- Exclusion for Z'_SMM up to 2.9 TeV and Z'_ψ up to 2.57 TeV
Summary

• Search for a new massive gauge boson (Z’) decaying to ee or µµ final state has been performed, and results are presented

• Analysis performed using 2.6 fb\(^{-1}\) (Z’ \rightarrow ee) and 2.8 fb\(^{-1}\) (Z’ \rightarrow µµ) @ 13 TeV

• No significant excess over the standard model backgrounds prediction has been observed

• Limits have been derived for Z’\(_{\text{SSM}}\) and Z’\(_{\psi}\) models
 • Mass range less than 3.15(2.60) TeV has been excluded for Z’\(_{\text{SSM}}\)(Z’\(_{\psi}\)) models
Acknowledgments

- This research is supported by Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University
- Department of Physics, Faculty of Science, Chulalongkorn University for financial support
- “CUniverse” research promotion project by Chulalongkorn University
- CMS collaboration, in particular, our Exotica/Zprime colleagues
- All SPC 2016 staffs for organizing this event
Backup
Transverse Slice Through CMS

- 85% - 90% efficiency for collecting LHC delivered data
- High efficiency and resolution in object (e, μ, tau etc.) reconstruction
- The CMS detector provides good tracking and particle ID all around the interaction point ($0 < \phi < 2\pi$, $|\eta| < 3$)
Z' → ee Event Selection

- High energy electron pairs (HEEP) selection is used
- Cut-based selection designed to be highly efficient at high E_T
- Events categories: Barrel-Barrel (BB) or Barrel-Endcap (BE)
- The highest mass pair M_{ee} is selected

<table>
<thead>
<tr>
<th>Variable</th>
<th>Barrel</th>
<th>Endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T range</td>
<td>> 35 GeV</td>
<td>> 35 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\eta_{e_i}</td>
<td>< 1.4442$</td>
</tr>
<tr>
<td>isEcalDriven</td>
<td>=1</td>
<td>=1</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\eta_{in}^{seed}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta\phi_{in}</td>
<td>$</td>
</tr>
<tr>
<td>H/E</td>
<td>$< 1/E + 0.05$</td>
<td>$< 5/E + 0.05$</td>
</tr>
<tr>
<td>σ_i,j</td>
<td>n/a</td>
<td>< 0.03</td>
</tr>
<tr>
<td>E^{2x5}/E^{5x5}</td>
<td>> 0.94 OR $E^{1x5}/E^{5x5} > 0.83$</td>
<td>n/a</td>
</tr>
<tr>
<td>EM + Had Depth 1 Isolation</td>
<td>$< 2 + 0.03Et + 0.28rho$</td>
<td>$< 2.5 + 0.28*rho$ for $Et<50$ else</td>
</tr>
<tr>
<td>Track Isol: Trk Pt</td>
<td>< 5</td>
<td>< 5</td>
</tr>
<tr>
<td>Inner Layer Lost Hits</td>
<td>≤ 1</td>
<td>≤ 1</td>
</tr>
<tr>
<td>$</td>
<td>dxyl</td>
<td>$</td>
</tr>
</tbody>
</table>

The total efficiency to trigger, reconstruct, and select a 1 TeV electron pair within the detector acceptance is predicted by the Monte Carlo simulation to be $75 \pm 8\%$ for barrel-barrel and $70 \pm 10\%$ for barrel-endcap electron pairs
Z' $\rightarrow \mu\mu$ Event Selection

Muon Selection

- Global muon and Tracker Muon
- $N_{(\text{muon hits})} > 0$; and $N_{(\text{muon stations})} > 1$
- d_{xy} wrt PV < 2 mm; and $N_{(\text{pixel hits})} > 0$
- $N_{(\text{tracker layers})} > 5$; and $\delta p_T/p_T < 0.3$
- Tracker Iso ($\Delta R=0.3$) < 0.1; and $p_T > 53$ GeV

DiMuon and Event Selection

- good offline-reconstructed PV, opposite-sign muons
- χ^2/d.o.f. of a common vertex fit < 20
- 3D opening angle α between the two muons momenta < $(\pi - 0.02)$ rad
- One of the muons matched within $\Delta R < 0.2$ to the HLT_Mu50 muon candidate

The total efficiency to trigger, reconstruct, and select a 1 TeV muon pair within the detector acceptance is predicted by the Monte Carlo simulation to be $89^{+11\%}_{-14\%}$