Nuclear Astrophysics in EURISOL

Carmen Angulo

UCL, Louvain-la-Neuve and CARINA network

www.cyc.ucl.ac.be/CARINA

In charge of the Subtask "Astrophysics" for EURISOL since January 2006

C. Angulo, subtask "Astrophysics", EURISOL Week, CERN, 27 - 30/11/2006

Understanding the Universe

The structure and the evolution of stars are determined by precise laws and properties involving **many aspects of physics**

C. Angulo, subtask "Astrophysics", EURISOL Week, CERN, 27 – 30/11/2006

C. Angulo, subtask "Astrophysics", EURISOL Week, CERN, 27 – 30/11/2006

Explaining the Universe

Figure from EURISOL report (based on Suess and Urey, Rev. Mod. Phys., 1956)

First CARINA workshop (June 2005)

Find the final report at www.cyc.ucl.ac.be/CARINA

Main conclusion

> For a coherent program in nuclear astrophysics one needs:

- High-intensity, high-purity light- to medium-mass radioactive beams.
- Equipped with a **full range of experimental tools**:
 - Series of gas targets (recirculation for rare gases)
 - A multi-stage recoil separator
 - A high-resolution magnetic forward spectrometer
 - Large-area, fine-granularity solid-state detectors or telescopes (on sharing basis; standard electronics and DAQ systems)
 - A dedicated high-resolution, high-efficiency gamma-ray detection system

Nuclear astrophysics in EURISOL

• Explosive scenarios: novae, X-ray burst, supernovae, neutron stars...

The Hot CNO cycle and the rp process

The r-process (the most challenging)

• Moderate n-rich sites and AGB stars

The s-process

UCL

C. Angulo, subtask "Astrophysics", EURISOL Week, CERN, 27 – 30/11/2006

Novae and X-ray bursters

Observables

- Capture and transfer reactions rates on 'short lived' nuclei (N to Te)
- Nuclear masses and p-separation energies (near the proton drip-line)
- > β -decay half-lives (including decay from excited and isomeric states)

Targets

- Inverse kinematics: proton- and alpha-rich targets
- High intensity beams: need improved technologies
 - Extended-gas targets and gas cells
 - Jet-gas targets (specially suitable for recoil separators)
 - Cryogenic H and He targets

Detectors

- Particles: DSSSD ... large solid angles ...
- Gamma:
 - Large gamma arrays
 - Recoil separators (preferred)

No single solution for all cases !

¹⁸F(p, α)¹⁵O and nova gamma-ray emission

Snapshots of a Classical Nova Outburst (cortesy of J. José)

- Gamma-ray emission from novae is dominated by positron annihilation following beta-decay of the newly synthesized ¹⁸F
- > ¹⁸F ($T_{1/2}$ = 110 min) → the annihilation radiation will be present after the expanding envelope of the novae becomes transparent.
- Current and planned gamma-ray observatories -> measurement of ¹⁸F abundances
- > Main destruction reaction: ${}^{18}F(p,\alpha){}^{15}O$
 - \rightarrow Need cross section values at c.m. energies of 200-300 keV

¹⁸F(p, α)¹⁵O: a long standing problem !

More than 10 years of research:

Direct measurement:	¹⁸ F(p, α) ¹⁵ O – done (LLN, Oak Ridge, Argonne)
Elastic scattering:	¹⁸ F(p,p) ¹⁸ F – done (LLN, Oak Ridge)
Transfer, DWBA:	¹⁸ F(d,p) ¹⁹ F – done (LNN, Oak Ridge)
Inelastic scattering:	¹⁹ Ne(p,p') ¹⁹ Ne – done, last week at LLN
Elastic scattering:	¹⁵ O(α, α) ¹⁵ O – accepted at LLN, next year

Beam (¹⁸F, ¹⁵O, ¹⁹Ne) intensities at LLN: 10⁶ – 10⁸ ions/s (0.1 – 10 pfA)

¹⁸F(p,α)¹⁵O: present situation

Rate at novae temperatures is still uncertain by orders of magnitude

Need data at 200 – 300 keV:

 \rightarrow a ¹⁸F beam of less than 4 MeV (less than 0.22 MeV/nucleon)

Cross section is orders of magnitude lower:

 \rightarrow Beam intensities required of the order of 10¹² ions/s (0.2 pµA)

Data from D. Bardayan et al. (Oak Ridge) and N. de Séréville et al. (LLN). Curves: R-matrix model

s- and r-processes

 (p,γ) and (α,γ) reactions: inverse kinematics, low energy radioactive beams

Experimental data for (n,γ) reactions are practically missing

Indirect methods? Accuracy? → astrophysics models

Direct measurements:

- \rightarrow neutron beams (n_TOF, FRANZ...)
- \rightarrow implanted targets > 10¹⁶ atoms/cm²

beams > 10¹⁰ ions/s (EURISOL?)

The case of ⁶⁰Fe

→ ⁶⁰Fe beam : EURISOL?

 Production of ⁶⁰Fe (T_{1/2} ~ 10⁶ yr) in massive stars (pre-supernovae) depends strongly on the very uncertain reactions:

> ⁵⁹Fe(n,γ)⁶⁰Fe ⁶⁰Fe(n,γ)⁶¹Fe

→ Supernova output

 \rightarrow Solar system formation triggered by a nearby supernova

- The ⁶⁰Fe isotope:
 - detected in deep sea sediments (Knie et al. 2004)
 - observed by INTEGRAL (Harris et al. 2005) ⁶⁰Co decay

Required beams

Required intensities: $10^{10} - 10^{12}$ ions/s (~ ppA - pµA)

The case of ¹⁰⁷Pd

- Spectroscopy observation of elements on the surface of very old metal-poor halo stars (early Universe) – Sneden et al. 2005
 - Above barium (A > 138), agreement with solar r-process pattern:
 early robust r-process ?
 - Below barium, disagreement, underproduction compared to solar system: *a second r-process* ?

→ Ag abundance, specially low

<u>Mode 1</u>: 107 Ag(n, γ) 108 Ag and 109 Ag(n, γ) 110 Ag are known

<u>*Mode 2*</u>: ¹⁰⁷Pd (β ⁻)→ ¹⁰⁷Ag, T_{1/2} = 6 10⁶ yr

But ${}^{107}Pd(n,\gamma){}^{108}Pd$ not known

Implanted ¹⁰⁷Pd target at EURISOL?

The r-process path

Physics case

• Nuclear structure properties of n-rich nuclei of paramount importance for understanding and modelling of the r-process

Proposed experiments

 Systemati N=82: pos:

Observal

• Masses, I deformatic

Does such a research program sound realistic to you?

Requirements

- Low-energy intense beams
- Penning trap mass spectrometer (masses)
- Laser ion source (half-lives)

and

Requirements for NA Community at EURISOL

EURISOL cater to a broad range of physics interests

How much beam time can be devoted to nuclear astrophysics experiments (very time-consuming)?

Yes, if dedicated LE accelerator and target-ion-source → see talk by Nigel Orr

Call for Ideas for FP7

- From a network to Joint Research Projects for NA
 → For details, please, check the CARINA website: www.cyc.ucl.ac.be/CARINA
- Ideas to be discussed in the next CARINA workshop: Spring 2007 in Belgium

(exact dates and venue to be announced soon)

Thanks to:

Maurizio Busso (Univ. Perugia) Alain Coc (CSNSM Orsay) Tom Davinson (Univ. Edinburgh) Jordi José (IEEC Barcelona) Gabriel Martinez-Pinedo (GSI Darmstadt) Alex Murphy (Univ. Edinburgh) Brian Fulton (Univ. York) Franz Käppeler (FZ Karlsruhe) Michael Heil (GSI Darmstadt) Alberto Mengoni (IAEA Vienna) Nigel Orr (LPC Caen) Endre Somorjai (ATOMKI Debrecen) Klaus Suemmerer (GSI Darmstadt)

For some of the cases discussed here: references are in the EURISOL report

