

Studies for Developing the MW-station Ion Source

A compact and efficient design to get 10¹⁵ fissions/s

- * Cylindrical liquid Hg converter (~10 l.)
- * Surrounding annular fission target (~5 l.)

The annular fission target split up in 8 independent fission targets

- * 8 x 1,6 kg of Uranium
- * standard UC_X (3 g/cm³ of U).

Overall issues

- How to connect ion source to such a target system?
 - Multiple ion sources? Acceptable for the design of radioactive beam line?
 - Multiple transfer lines? Cf. Thierry STORA's presentation.
- What kind of ion source?
 - Capable of operating under the vapour from the bulky target.
 - Capable of withstanding the level of radiation generated close to the target.

Basic scheme

$$\mathbb{Q} = \mathbb{C} \times \Delta \mathbf{P}$$
 with \mathbb{C} order of 1 l/s. (molecular flow)
 $\sim 10^{-6} < \mathbf{P_{IS}} < \sim 10^{-5} \text{ mbar}$ $\rightarrow \mathbb{Q}_{\text{out}} < \sim 10^{-5} \text{ mbar.l/s}$ (negligible)
 $\rightarrow \mathbf{P_{IS}} \sim \mathbf{P_{target}}$

If no specific device on transfer line, most target out-gassing goes into the ion source.

Vapour from the fission target

Considering a piece of 1/8 target (1,6 kg of ^{nat.}U):

Overall radioactive nuclei production

 $\sim 10^{16}$ nuclei/s in target; if 10% released

 \rightarrow ~10¹⁵ nuclei/s \Leftrightarrow ~10⁻⁴ mbar.l/s

Stable out-gassing

 UC_2 out-gassing is dominant (x100 larger than Ta out-gassing);

Target surface at least x10 wider than standard

 \rightarrow > 10⁻¹ mbar.l/s (equilibrium) only a part reaches the ion source.

What kind of ion source?

- \top arget out-gassing surface is a few x10 wider than standard
- \rightarrow for efficient ion sources ($\epsilon_{ion} \sim 1\%$): total extracted beam \sim mA
- Ion source close to the target $\rightarrow 10^{14}$ neutrons/cm²/MW of beam

What about ECRIS?

- OK for operating with such out-gassing conditions
- Possibility of transfer-line cooling to reduce metal vapours
- RF injection issue
- Radiation damage of magnetic confinement system:
 - Possibility of using coils instead of permanent magnets
 - Radiation damage of insulators? e.g. glass fibres ~10 MGy

Such studies are in progress for SPIRAL-2...

FEBIAD-type Ion Source?

- Not dedicated for operating with high vapour flow:
 - Standard FEBIAD operate up to 10⁻³ mbar.l/s
 - EBGP (radial type, by J.M. Nitschke) up to 10-4 mbar. I/s
- Nielsen and Nier-Bernas ion sources can operate:
 - e.g. beams of a few mA with an emittance of 20 π .mm.mrad @ 40 kV.
 - But quick wearing of the cathode.
- Radiation damage of the refractory insulators
 - {cathode/anode} → need of refractory insulators close to ionization chamber.

→ IRENA prototype

Main features:

- Minimum of components (no magnet!)
- Insulators away from the ion. chamber
- Radial cathode more reliable

Cathode Design

- > > hazard of cathode/anode short
- > > residual pressure in chamber
- strong e- emisssion required

IRENA prototype based on EBGP (Nitschke, LBL 1985).

IRENA 1st prototype: First results (1)

Optimal conditions not yet reached: ionization efficiency (Kr): 0.03 % @ 2.10⁻⁵ mbar.

Tests interrupted in March 06; to be pursued with a prototype supplied by NIPNE.

IRENA 1st prototype: First results (2)

Total beam extracted @ 10⁻⁵ mbar as function of cathode heating.

Total beam intensity comparable to EBGP (~µA) expected by 2000 °C within these operation conditions.

Optimizing IRENA design

Increasing e- emission by 10³ to get a prototype working with MW-target out-gassing.

 \rightarrow Another cathode material or cathode surface $\times 10^3$

(the ionization chamber may reach the typical size of **ECRIS**)

Further studies using IES Lorentz code planned in 2007.

What about RILIS?

- High pressure in the hot cavity
 - → Larger production of non-selected positive ions
 - → Deterioration of the plasma conditions in the cavity
- Possible remedy
 - Increasing cavity diameter (keeping ∅/L² ~ constant)
 - → larger conductance and larger surface for increasing e- emission.
 - Changing cavity material to increase e- emission.
 - Or...

a plasma confinement structure

Resume

- Important to minimize target size as much as possible
 Cf. also D. Ridika's poster
- To get beams from Multi-MW target, many aspects have to be considered: specification on transfer tube, beam extraction, beam contamination etc.
- Some possibilities for developing MW-station ion sources but requires important R&D works → need for support

Acknowledgment:

Many thanks to all collaborators, special thanks to R. Catherall, V. Fedoseev, A. Herrera-Martinez, Y. Kadi, J. Lettry, D. Ridikas, T. Stora, F. Wenander)