2HDMC Two-Higgs-Doublet Model Calculator

Oscar Stål

Uppsala University

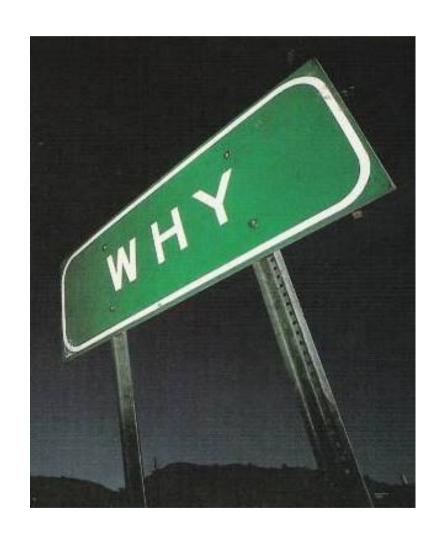
Interplay of Collider and Flavour Physics 2nd general meeting CERN, 16-18 March 2009

- 1. 2HDM physics
- 2. 2HDMC code
- 3. Examples

Why 2HDM?

- Simplest non-trivial extension of SM Higgs sector
- Realized in the MSSM, effectively in extensions of the MSSM
- Interesting phenomenology: nMFV, FCNC, CP-violation, new cc, dark matter ...
 - --> Flavour physics constraints important for 2HDM ...

Talks by F. Mescia, T. Jones (yesterday) S. Heinemeyer, N. Mahmoudi (this session)



2HDM Potential

Two complex $SU(2)_L$ doublets: Φ_1 and Φ_2 (Y=+1)

Invariance under unitary transformation: $\Phi_a \to \Phi'_a = U_{ab}\Phi_b$

General potential:

$$\mathcal{V} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left[m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right]
+ \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left(\Phi_{1}^{\dagger} \Phi_{2} \right) \left(\Phi_{2}^{\dagger} \Phi_{1} \right)
+ \left\{ \frac{1}{2} \lambda_{5} \left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \left(\Phi_{1}^{\dagger} \Phi_{2} \right) + \text{h.c.} \right\}.$$

Explicit CP-violation from complex parameters

Tree-level MSSM:
$$\lambda_1 = \lambda_2 = \frac{g^2 + (g')^2}{4}$$
 $\lambda_3 = \frac{g^2 - (g')^2}{4}$ $\lambda_4 = -\frac{g^2}{2}$ $\lambda_5 = \lambda_6 = \lambda_7 = 0$ $m_{12}^2 = m_A^2 \cos \beta \sin \beta$

Theoretical constraints

The Higgs potential must be bounded from below (positivity) Translates into conditions on the λ_i :

$$\lambda_1 > 0, \qquad \lambda_2 > 0, \qquad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}$$

If $\lambda_6 = \lambda_7 = 0$: $\lambda_3 + \lambda_4 - |\lambda_5| > -\sqrt{\lambda_1 \lambda_2}$

 \exists (longer) expressions also for the case when $\lambda_6, \lambda_7 \neq 0$

Requiring tree-level unitarity for HH and HV_L scattering sets upper limits on the λ_i parameters: $|\Lambda_{V\sigma}^{Z_2}| \leq 16\pi$

with
$$\lambda_6 = \lambda_7 = 0$$

$$\Lambda_{21\pm}^{+} = \frac{1}{2} \left(\lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4|\lambda_5|^2} \right)
\Lambda_{01\pm}^{+} = \frac{1}{2} \left(\lambda_1 + \lambda_2 \pm \sqrt{(\lambda_1 - \lambda_2)^2 + 4\lambda_4^2} \right)
\Lambda_{00\pm}^{+} = \frac{1}{2} \left(3(\lambda_1 + \lambda_2) \pm \sqrt{9(\lambda_1 - \lambda_2)^2 + 4(2\lambda_3 + \lambda_4)^2} \right)$$

$$\Lambda_{00\pm}^- = \lambda_3 + 2\lambda_4 \pm 3|\lambda_5|$$

$$\Lambda_{01\pm}^{-} = \lambda_3 \pm |\lambda_5|$$

$$\Lambda_{20}^- = \lambda_3 - \lambda_4$$

$$\Lambda_{21}^- = \lambda_3 + \lambda_4$$

Ginzburg and Ivanov, PRD72, 115010 (2005) [hep-ph/0508020]

EW symmetry breaking

EW symmetry broken by non-zero vev of Φ_1 and/or Φ_2

Spectrum contains three neutral Higgses H_i and a charged pair H^{\pm} If \mathcal{CP} conserved $\Rightarrow h, H$ (CP-even, $m_h \leq m_H$) and A (CP-odd)

Parameters m_{11}^2 and m_{22}^2 traded for $v_1 \equiv v \cos \beta$, $v_2 \equiv v \sin \beta$

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \left(G^+ \cos \beta - H^+ \sin \beta \right) \\ v \cos \beta - h \sin \alpha + H \cos \alpha + i \left(G^0 \cos \beta - A \sin \beta \right) \end{pmatrix} \qquad v \simeq 246 \text{ GeV}$$

$$\Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} \left(G^+ \sin \beta + H^+ \cos \beta \right) \\ v \sin \beta + h \cos \alpha + H \sin \alpha + i \left(G^0 \sin \beta + A \cos \beta \right) \end{pmatrix}$$

 $\tan \beta \equiv v_2/v_1$ defines basis in Φ space. Higgs basis: $\tan \beta = 0$

Higgs-Gauge couplings determined by invariant $s_{\beta-\alpha} \equiv \sin(\beta-\alpha)$

Parametrization: m_h , m_H , m_A , m_{H^+} , $s_{\beta-\alpha}$, λ_6 , λ_7 , m_{12}^2

Yukawa sector

Quark Yukawa interactions:

$$-\mathcal{L}_{Y} = \bar{Q}_{L}^{0}\tilde{\Phi}_{1}\eta_{1}^{U,0}U_{R}^{0} + \bar{Q}_{L}^{0}\Phi_{1}\eta_{1}^{D,0}D_{R}^{0} + \bar{Q}_{L}^{0}\tilde{\Phi}_{2}\eta_{2}^{U,0}U_{R}^{0} + \bar{Q}_{L}^{0}\Phi_{2}\eta_{2}^{D,0}D_{R}^{0} + \text{h.c.}$$

$$Q_{L}^{0}, U_{R}^{0} \text{ etc. weak ineraction eigenstates.} \qquad \tilde{\Phi} \equiv i\sigma_{2}\Phi^{*}$$

In Higgs basis (only $H_1 \equiv \Phi_1$ has vev):

$$-\mathcal{L}_{Y} = \bar{Q}_{L}^{0} \tilde{H}_{1} \kappa^{U,0} U_{R}^{0} + \bar{Q}_{L}^{0} H_{1} \kappa^{D,0} D_{R}^{0} + \bar{Q}_{L}^{0} \tilde{H}_{2} \rho^{U,0} U_{R}^{0} + \bar{Q}_{L}^{0} H_{2} \rho^{D,0} D_{R}^{0} + \text{h.c.}$$

$$\begin{pmatrix} \kappa^{Q,0} \\ \rho^{Q,0} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1^{Q,0} \\ \eta_2^{Q,0} \end{pmatrix}$$

Mass eigenstates:
$$U_R = V_R^U U_R^0$$
, $D_R = V_R^D D_R^0$ $V_{CKM} = V_L^U (V_R^D)^{\dagger}$ $U_L = V_L^U U_L^0$, $D_L = V_L^D D_L^0$

Transformed couplings:
$$\kappa^Q = V_L^Q \kappa^{Q,0} (V_R^Q)^{\dagger}$$
 $\rho^Q = V_L^Q \rho^{Q,0} (V_R^Q)^{\dagger}$

$$\Rightarrow \kappa^Q = \sqrt{2} \frac{m^Q}{v}$$

Davidson and Haber, PRD72, 035004 (2005) [hep-ph/0504050]

Couplings of physical Higgs states

Basis-independent Yukawa couplings (no \mathcal{CP} -violation):

$$-\mathcal{L}_{Y} = \frac{1}{\sqrt{2}} \overline{D} \left\{ \kappa^{D} s_{\beta-\alpha} + \rho^{D} c_{\beta-\alpha} \right\} Dh + \frac{1}{\sqrt{2}} \overline{D} \left\{ \kappa^{D} c_{\beta-\alpha} - \rho^{D} s_{\beta-\alpha} \right\} DH + \frac{\mathrm{i}}{\sqrt{2}} \overline{D} \gamma_{5} \rho^{D} DA$$

$$+ \frac{1}{\sqrt{2}} \overline{U} \left\{ \kappa^{U} s_{\beta-\alpha} + \rho^{U} c_{\beta-\alpha} \right\} Uh + \frac{1}{\sqrt{2}} \overline{U} \left\{ \kappa^{U} c_{\beta-\alpha} - \rho^{U} s_{\beta-\alpha} \right\} UH - \frac{\mathrm{i}}{\sqrt{2}} \overline{U} \gamma_{5} \rho^{U} UA$$

$$+ \frac{1}{\sqrt{2}} \overline{L} \left\{ \kappa^{L} s_{\beta-\alpha} + \rho^{L} c_{\beta-\alpha} \right\} Lh + \frac{1}{\sqrt{2}} \overline{L} \left\{ \kappa^{L} c_{\beta-\alpha} - \rho^{L} s_{\beta-\alpha} \right\} LH + \frac{\mathrm{i}}{\sqrt{2}} \overline{L} \gamma_{5} \rho^{L} LA$$

$$+ \left[\overline{U} \left\{ V_{\text{CKM}} \rho^{D} P_{R} - \rho^{U} V_{\text{CKM}} P_{L} \right\} DH^{+} + \overline{\nu} \rho^{L} P_{R} LH^{+} + \text{h.c.} \right].$$

Free couplings: 3×3 symmetric Yukawa matrices ρ^D, ρ^U, ρ^L

Diagonal $\rho^Q \Rightarrow H^{\pm}$ flavour structure given by CKM Off-diagonal ρ^Q elements \Rightarrow Both non-MFV H^{\pm} and FCNC

Discrete Yukawa symmetry

FCNC problem naturally solved by GW mechanism Introduce Z_2 under which e.g. D_R , Φ_1 are even, while U_R , Φ_2 odd:

$$-\mathcal{L}_{Y} = \bar{Q}_{L}^{0} \tilde{\Phi}_{1} Z^{U,0} U_{R}^{0} + \bar{Q}_{L}^{0} \Phi_{1} \eta_{1}^{D,0} D_{R}^{0} + \bar{Q}_{L}^{0} \tilde{\Phi}_{2} \eta_{2}^{U,0} U_{R}^{0} + \bar{Q}_{L}^{0} \Phi_{2} Z^{D,0} D_{R}^{0} + \text{h.c.}$$

$$\Rightarrow \rho^{U} = \kappa^{U} \cot \beta, \ \rho^{D} = -\kappa^{D} \tan \beta \quad \text{(Type-II)}$$

 $\tan \beta$ promoted to physical parameter through Yukawa couplings

	Type			
	I	II	III	IV
$\overline{ ho^D}$	$\kappa^D \cot \beta$	$-\kappa^D \tan \beta$	$-\kappa^D \tan \beta$	$\kappa^D \cot \beta$
$ ho^U$	$\kappa^U \cot \beta$	$\kappa^U \cot \beta$	$\kappa^U \cot \beta$	$\kappa^U \cot \beta$
$ ho^L$	$\kappa^L \cot \beta$	$-\kappa^L \tan \beta$	$\kappa^L \cot \beta$	$-\kappa^L \tan \beta$

Barger, Hewitt, Philips, PRD41 (1990)

Non-zero λ_6 or λ_7 in the potential gives hard violation of Z_2

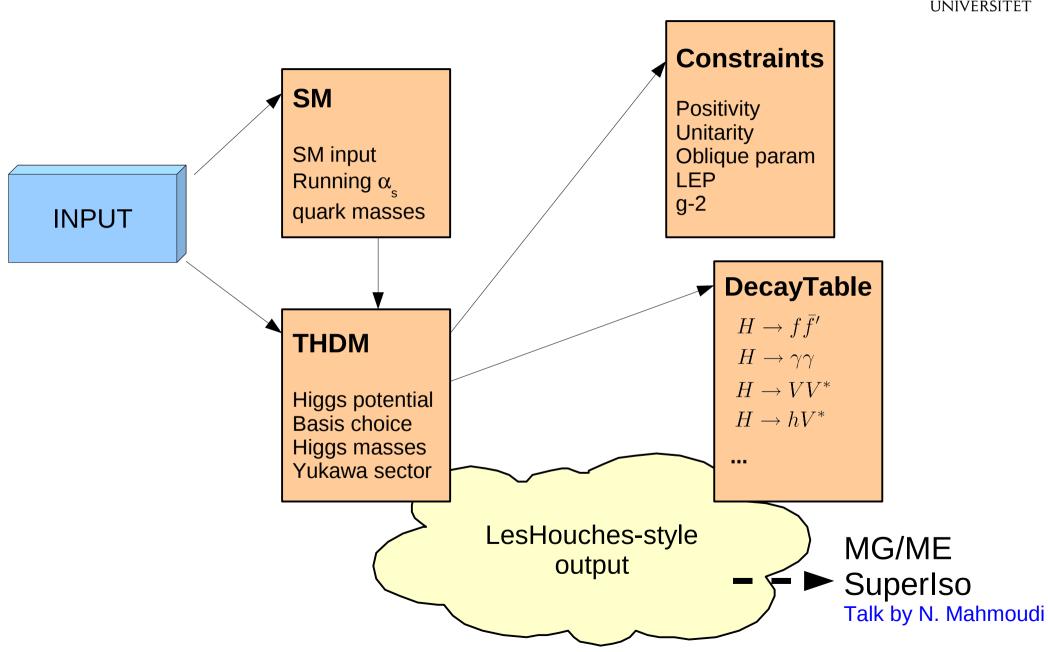
2HDMC: Calculator for the 2HDM

Features version 1.01

- General 2HDM (currently without CP-violation)
- Different parametrizations including physical masses
- Tree-level mass calculation
- Arbitrary Yukawa sector or "types"
- Theoretical constraints (positivity, unitarity)
- LEP mass limits (NMSSMTools)
- Oblique parameters, muon g-2
- Yukawa couplings with running quark masses
- All two-body Higgs decays at tree-level (incl. FCNC)
- Non-standard top decays
- H -> VV* and H -> HV* off-shell decays
- H -> gg and H -> $\gamma\gamma$
- LesHouches-style interface
- MadGraph/MadEvent model

http://www.isv.uu.se/thep/MC/2HDMC

Structure of 2HDMC code



Sample run


```
▼ oscar@amos: ~/projects/2hdmcalc

                                                                                         _ 🗆 X
 File Edit View Terminal Tabs Help
oscar@amos:~/projects/2hdmcalc$ ./CalcPhys 50 120 150 160 0.5 0. 0. 0. 10 2 output file
2HDM parameters in physical mass basis:
      m h:
               50.00000
      m H:
              120.00000
      m A:
              150.00000
              160.00000
     m H+:
 sin(b-a):
                0.50000
 lambda 6:
                0.00000
 lambda 7:
                0.00000
    m12^2:
               -0.00000
tan(beta):
               10.00000
2HDM parameters in generic basis:
 lambda 1:
               10.91937
 lambda 2:
                0.17236
 lambda 3:
                1.78415
 lambda 4:
               -0.47341
 lambda 5:
               -0.37114
 lambda 6:
                0.00000
 lambda 7:
                0.00000
    m12^2:
               -0.00000
tan(beta):
               10.00000
Tree-level unitarity 1
Stability
                      0 (hZ:1 hZ2b:0 hZ2tau:1 hZinv:1 hZ2j:0 hZ2gamma:1 hZ4b:1 hZ4tau:1 hZ2b2
LEP constraints
tau:1 hA:1 hA4b:1 hA4tau:1 hA2b2tau:1 hA6b:1 hA6tau:1 ZhZjj:1 HpHp:1 HpHptau:1 HpHpcs:1)
                     -5.36266e-02
                      8.39449e-03
                      2.56652e-03
                     -1.88629e-02
                     -3.96246e-03
                      7.70645e-04
Delta rho
                      6.56281e-05
                      4.44178e-11
Delta amu
oscar@amos:~/projects/2hdmcalc$
```

Example 1: SM-like Higgs

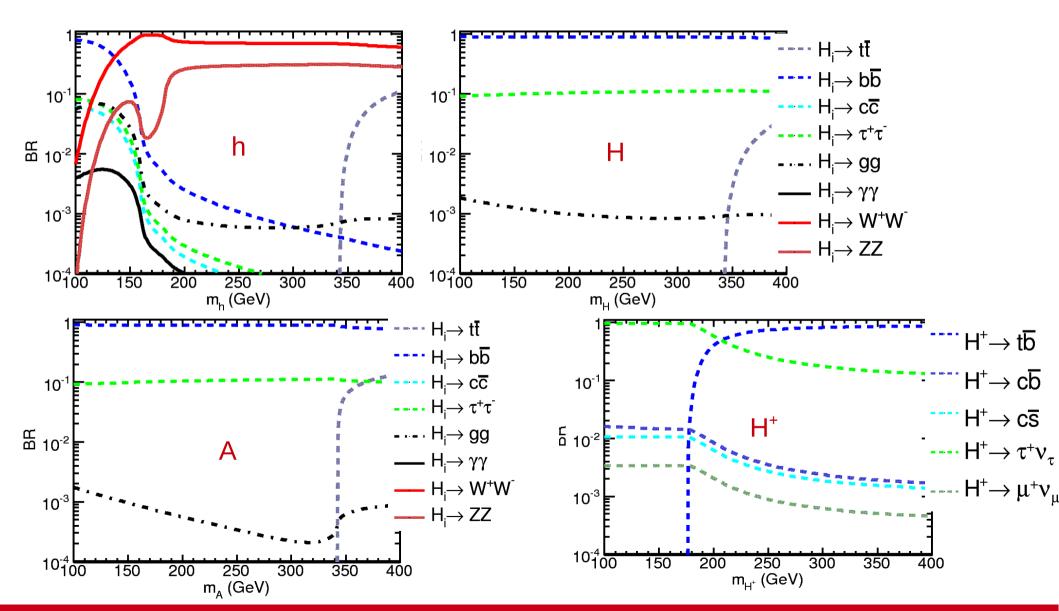
$$\sin(\beta - \alpha) = 1$$

(SM-like
$$h$$
)
$$\lambda_6 = \lambda_7 = 0 \qquad m_{12}^2 = 0$$

$$m_{12}^2 = 0$$

$$\tan \beta = 10$$

Type II Yukawas
$$m_h = m_H = m_A = m_{H^+}$$
 scan



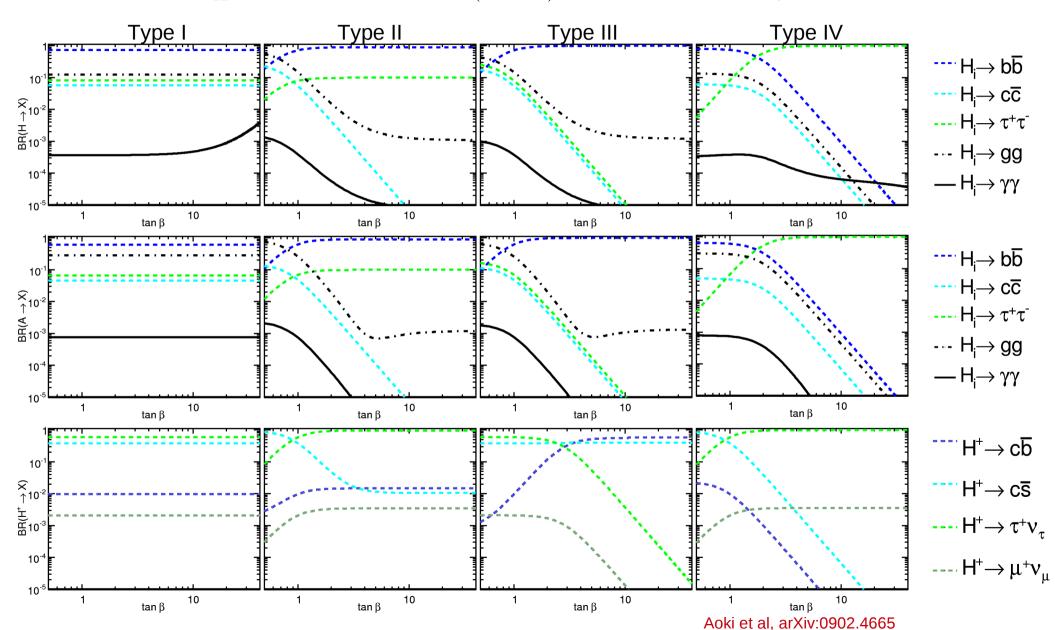
Example 2: Different Yukawa sectors

$$m_H = m_A = m_{H^+} = 150 \text{ GeV}$$
 $\sin(\beta - \alpha) = 1$ $m_{12} = M\sqrt{\sin\beta\cos\beta}$

$$\sin(\beta - \alpha) = 1$$

$$m_{12} = M\sqrt{\sin\beta\cos\beta}$$

Su, Thomas, arXiv:0903.0667



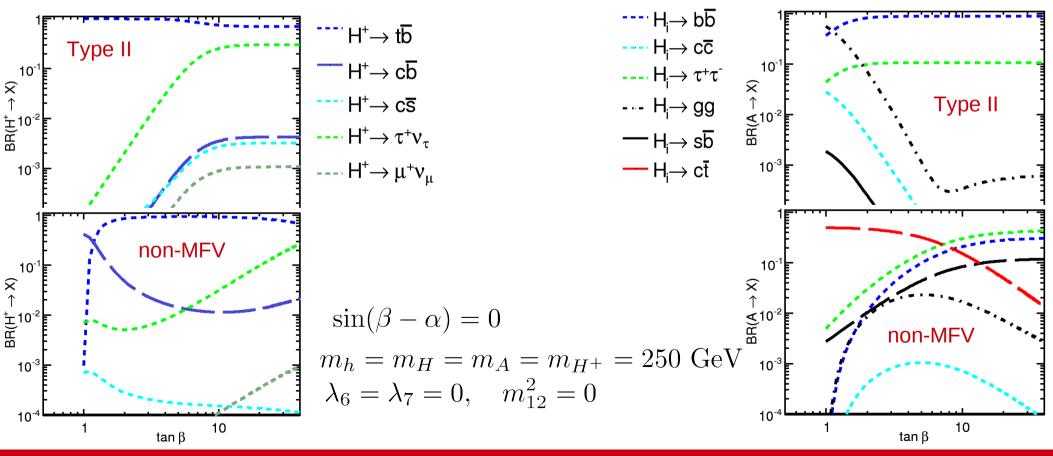
Example 3: Flavour-violating decays

Diaz-Cruz, Hernandez-Sanchez, Moretti, Noriega-Papaqui, Rosado, arxiv:0902.4490

Four-texture Yukawa matrices \Rightarrow

$$[\rho^D]_{ij} = -[\kappa^D]_{ij} \tan \beta - \frac{\sqrt{m_{d_i} m_{d_j}}}{v \cos \beta} \chi_{ij} \qquad [\rho^U]_{ij} = [\kappa^U]_{ij} \cot \beta - \frac{\sqrt{m_{u_i} m_{u_j}}}{v \sin \beta} \chi_{ij}$$

Type II: $\chi_{ij} = 0 \quad \forall i, j$ Scenario A: $\chi_{ij} = 1 \quad \forall i, j$



Summary

- The 2HDM has interesting phenomenology, both for high-energy colliders and flavour physics.
- Some aspects of the 2HDM have perhaps been somewhat overlooked (MSSMania?).
- 2HDMC is a new tool to facilitate studies in the general 2HDM, currently for the CP-conserving case.

Code download: http://www.isv.uu.se/thep/MC/2HDMC

Physics and Manual: D. Eriksson, J. Rathsman, O. Stål

arXiv:0902.0851