
### Imperial College London



# LHCb New B physics ideas

#### **Ulrik Egede** @ Interplay of Collider and Flavour Physics, 2<sup>nd</sup> meeting 17 March 2009

#### **Physics case for LHCb**

Find New Physics through its indirect effects in Heavy Flavour physics

Measure CP violation in B and D decays which is not compatible with the single complex phase in the CKM matrix.

Find deviations from Standard Model expectations in exclusive Flavour Changing Neutral Current decays.

#### **This presentation**

- Will look at some new developments in how we can do analysis in LHCb
- In **bold red** I will pinpoint areas where clarifications or additional work is required from theory side.
- Some different scenarios for physics in the next few years and how LHC*b* can provide interpretation
- The physics case for an upgrade of LHCb

#### $B_d \rightarrow K^{*0}e^+e^-$ as powerful as $B_s \rightarrow \phi \gamma$

In the SM the electroweak penguin for  $b \to s\gamma$  and  $b \to sl^+l^-$  are dominated by the left handed current

We search for New Physics by looking for a large right handed component.

Time dependent CPV analysis of  $B_d \rightarrow K^{*0}\gamma$  from B-factories

Time dependent analysis of  $B_s \rightarrow \varphi \gamma$  at LHCb

Angular analysis in  $B_d \rightarrow K^{*0}\mu^+\mu^-$ 

New development to look at  $B_d \rightarrow K^{*0}e^+e^-$ 

Has so far only been considered for ratio with respect to muon channel

Inherently much harder as trigger with electrons is difficult compared to muons

#### $B_d \rightarrow K^{*0}e^+e^-$ as powerful as $B_s \rightarrow \phi \gamma$

Look in region (30 MeV)<sup>2</sup> <  $q^2$  < (1 GeV)<sup>2</sup>

Contributions not coming from virtual photons are very small in this region.

We can ignore the vector mesons in this region?

In angle between di-lepton and K\* plane ( $\phi$ ) we fit for  $A_{T}^{2}$ .

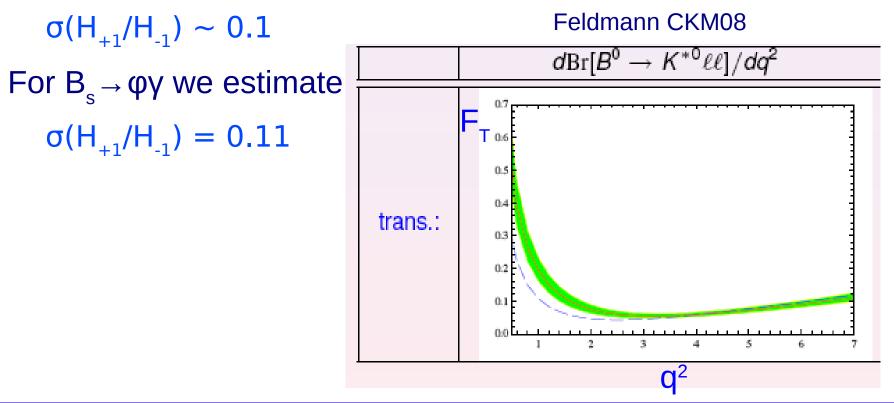
Not dependent on longitudinal part which we can't calculate

$$\frac{d\Gamma}{d\varphi} = \frac{\Gamma}{2\pi} \left( 1 + \frac{1}{2} F_{\tau} A_{\tau}^{(2)} \cos 2\varphi + A_{\Im} \sin 2\varphi \right)$$

In SM limit we have

$$H_{+1} \ll H_{-1} \Rightarrow A_T^2 \approx -2 \Re \left| \frac{H_{+1}}{H_{-1}} \right|$$

so  $A_T^2$  is just the fraction of right handed current in amplitude.


17 March 2009

### $\boldsymbol{B}_d \to \boldsymbol{K^{\ast 0} e^+ e^-} \text{ as a competitor to } \boldsymbol{B}_s \to \boldsymbol{\phi} \boldsymbol{\gamma}$

Due to  $F_T = 1 - F_L$  factor in front of  $A_T^2$  the sensitivity improves rapidly at low  $q^2$ 

Differential decay rate also rising at low q<sup>2</sup>

Current estimate of resolution with 2 fb<sup>-1</sup>:



17 March 2009

# $\boldsymbol{B}_s \to \boldsymbol{J} / \boldsymbol{\psi} ~ \boldsymbol{\phi}$

It is estimated that the S-wave contamination in the  $B_s \rightarrow J/\psi \phi$  decay will be at the 5-10% level. [arXiv:0812.2832]

A problem:

If ignored will lead to  $2\beta_s$  measurement ~15% closer to zero.

Including in fit add 2 extra parameters and leads to reduction in resolution of 20%

An advantage

Can measure CP violation in  $B_s \rightarrow J/\psi f_0$  decay

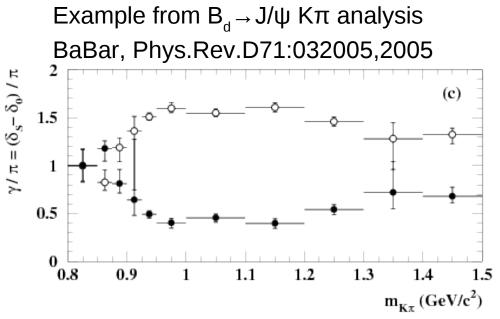
Less statistics (by a factor 5?)

No angular analysis required as  $P \rightarrow V S$  decay.

Is angular analysis required due to rescattering of KK/ $\pi\pi$  final state?

Can measure sign of  $cos(2\beta_s)$ 

# $\boldsymbol{B}_{s} \to \boldsymbol{J} / \boldsymbol{\psi} ~ \boldsymbol{\phi}$


Measurement of  $cos(2\beta_s)$ 

Bin measurements in invariant KK mass and look at phase shift between P and S wave.

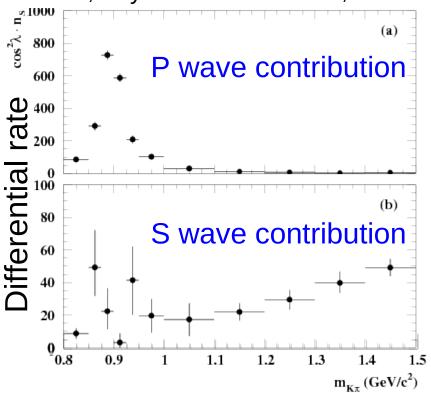
2 possible solutions depending on sign of  $cos(2\beta_s)$ 

Pick the one where phase shift is as expected through P-wave resonance.

Require a few changes in analysis strategy but seems possible.



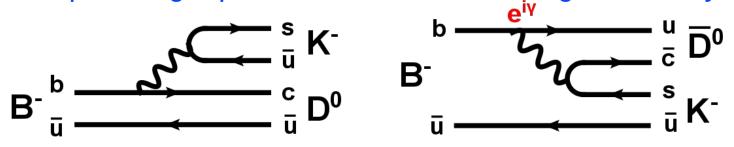
S-waves


## $\boldsymbol{B}_{d} \rightarrow \left(\boldsymbol{K} \boldsymbol{\pi} \right) \boldsymbol{\mu}^{*} \boldsymbol{\mu}^{\text{-}}$

The  $B_d \rightarrow (K\pi)\mu^+\mu^-$  has the same S-wave problem. What is the fraction?

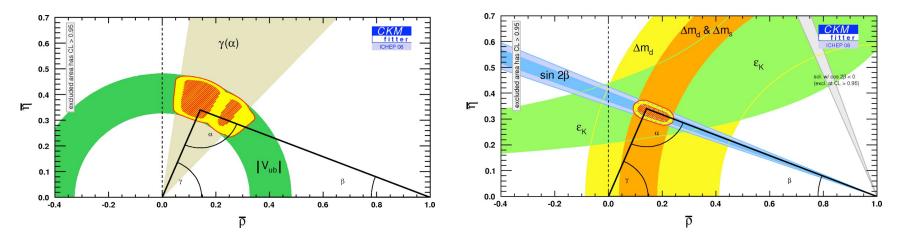
BaBar measure 7% from  $B_d \rightarrow J/\psi K\pi$ 

- Can we straight transfer this number?
- Need to include this in formalism.
- Will taking this into account increase errors in SM prediction?


Example from  $B_d \rightarrow J/\psi \ K\pi$  analysis BaBar, Phys.Rev.D71:032005,2005



#### CP angle $\gamma$


A direct test of CP violation contribution from New Physics

Compare angle y measured from interfering tree decays



which should always take the value from the CKM matrix

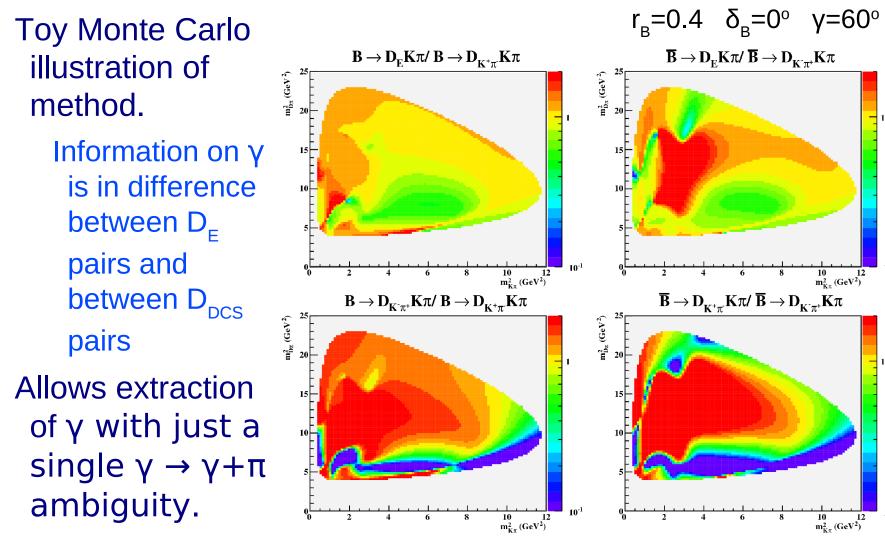
to angle measured from indirect constraint



#### Looking at B $\rightarrow$ DK $\pi$ Dalitz decay

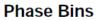
Take advantage of interference between the many  $B \rightarrow D^*K$  and  $B \rightarrow DK^*$  resonances [arXiv:0810:2706]. For each point in the Dalitz plot we have

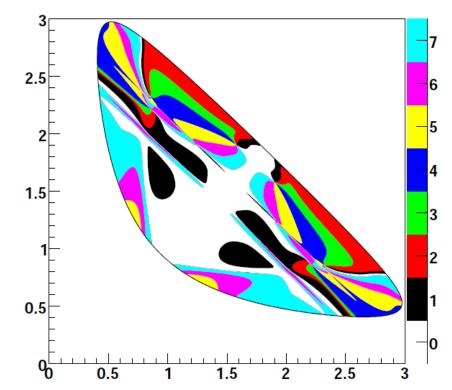
$$\frac{\sqrt{2}A(B^0 \to D_E K^{*0})}{A(B^0 \to \bar{D}^0 K^{*0})} - 1 = r_B e^{i(\delta_B + \gamma)} \equiv x_+ + iy_+$$
$$\frac{\sqrt{2}A(\bar{B}^0 \to D_E \bar{K}^{*0})}{A(\bar{B}^0 \to D^0 \bar{K}^{*0})} - 1 = r_B e^{i(\delta_B - \gamma)} \equiv x_- + iy_-.$$


Similar ratios for the  $\rm D_{\rm DCS}$  decays

No full sensitivity study yet, but the quasi-two body analysis of  $B \rightarrow DK^*$  gives  $\sigma(\gamma)=9^{\circ}$  with 2 fb<sup>-1</sup>.

Here we only add information so resolution should be even better.


CP angle  $\gamma$ 


#### Looking at B $\rightarrow$ DK $\pi$ Dalitz decay



#### **Constraints from CLEO-c**

- The shared D final state can also be  $D/\overline{D} \rightarrow K_s^0 \pi^+ \pi^-$ This is the most sensitive  $\gamma$  analysis from B-factories
- Approach based on a fit to the resonances in the Dalitz plot
- leave a 10° systematic error Not a problem now but will limit precision at LHCb
- Can instead use binned analysis [arXiv:0810.3666]
  - Shape bins to have same strong phase
  - Extract this phase from CLEO-c data
- Reduces systematic error to 2°.





17 March 2009

#### The SM Higgs and nothing else

Imagine CMS/ATLAS see a SM Higgs and nothing else.

- In LHCb we can expect
  - $B_s \rightarrow \mu^+\mu^-$  discovered at SM level
  - CP angle y at value from combined fits
  - $B_d \rightarrow K^{*0}\mu^+\mu^-$  zero point at SM value
- or much more exciting with squarks masses ~10 TeV
  - Non-SM expectations in  $B_s$  box diagram from  $B_s \rightarrow J/\psi \phi$
  - $B_d \rightarrow K^{*0}\mu^+\mu^-$  deviations in zero point of  $A_{FB}$ .
  - Both would be evidence of New Physics beyond limit for direct production.

#### A SUSY spectra is discovered

ATLAS and CMS might discover a host of new states but many different theory models are possible

- $B_{_S} \rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$  will set very strict constraints on the Higgs sector of SUSY
- CP measurements investigate the flavour structure

Can this help to understand what kind of symmetry suppress the "natural" FCNC level?

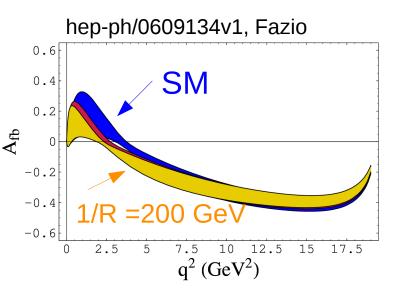
 $B_d \rightarrow K^{*0}\mu^+\mu^-$  will investigate handedness of SUSY couplings

#### **Evidence of extra dimensions**

The Appelquist, Cheng and Dobrescu model gives new flavour couplings, but no new phases

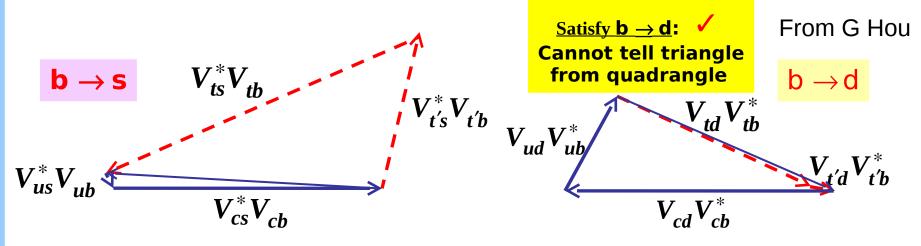
#### Strong effect on $B_s^{} \rightarrow \mu^+\mu^-$ from modified $Z^0$ penguins

Buras, Springer & Weiler; Nuclear Physics B 660 (2003) 225-268


Branching ratios for rare decays in the ACD model and the SM as discussed in the text

| 1/R                                                  | 200 GeV | 250 GeV | 300 GeV | 400 GeV | SM   |
|------------------------------------------------------|---------|---------|---------|---------|------|
| $\operatorname{Er}(B_s \to \mu^+ \mu^-) \times 10^9$ | 6.18    | 5.28    | 4.78    | 4.27    | 3.59 |

$$B_d \rightarrow K^{*0} \mu^+ \mu^-$$
 is also sensitive in  $A_{FB}$  zero point


As no new phases, *CP* violation measurements will stay at SM values.

# Any other signatures in flavour physics?

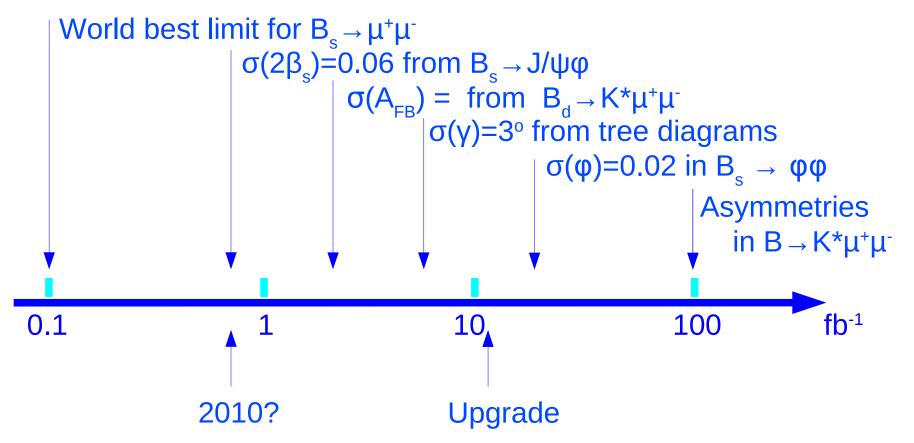


### A 4<sup>th</sup> generation

ATLAS/CMS will discover signals compatible with a set of heavier quarks.



Could show very large effects for CP violation in  $\rm B_{s}$  box

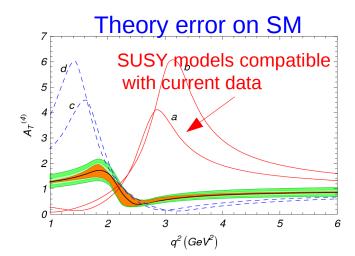

Verification of large  $2\beta_s$  hint from Tevatron

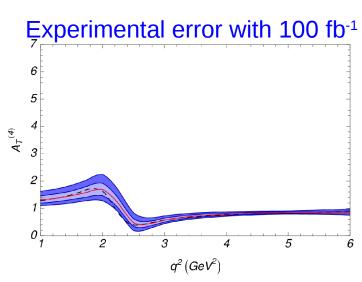
Still consistent with B<sub>d</sub> box

Would expect significant effects in  $B_d \rightarrow K^{*0}\mu^+\mu^-$  as well

#### **Physics with LHCb**

There is interesting physics for LHCb across a very wide range of integrated luminosities





#### Why do we need an upgrade?

- For many observables 10 fb<sup>-1</sup> will not make us reach theoretical limits
- Excellent opportunities to study the nature of New Physics discovered during first phase of LHC
- Comparison of CP violation in  $b \rightarrow s$  box and penguin processes
  - $B_s \rightarrow \phi \phi$  possible with high precision (~0.01) with 100 fb<sup>-1</sup>

Compare with further studies of  $B_{_S}^{} \rightarrow J/\psi \; \phi$ 

Angular observables in  $B_d \rightarrow K^{*0}\mu^+\mu^-$ 



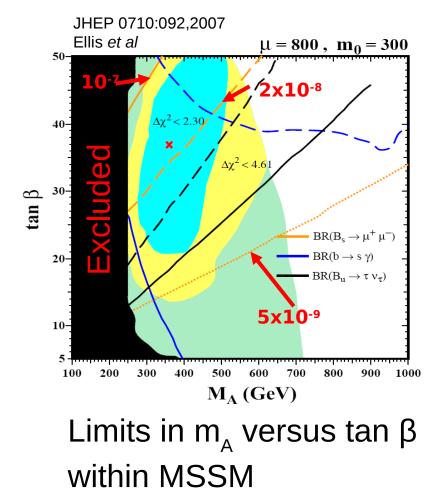


#### Conclusion

- Flavour physics at the LHC will play a central role in the understanding of any new physics signals
- Several New Ideas presented today but also open questions in the interpretation.
- LHC*b* has a physics programme extending through the full range of integrated luminosity achievable
- Many channels available even if only subset shown here
  - CP violation in  $B_s \rightarrow \phi \gamma$ , CP angle  $\alpha$ , D<sup>0</sup> mixing and CP
    - violation, B meson and baryon spectroscopy,  $B_s^{} \rightarrow \phi \mu^+ \mu^-$
- An upgrade is essential to reach ultimate precision in channels with small theoretical errors
- Exclusive channels have much to offer in flavour physics

#### Backup

17 March 2009



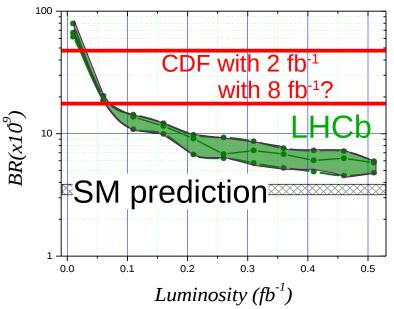

**Physics** 

 $B_s \rightarrow \mu^+\mu^-$ 

- This very rare decay has a SM branching ratio of 3.5  $10^{-9}$
- Any pseudoscalar Higgs can modify BR by large amount

Can thus set severe constraints on NP




**Physics** 

 $\mathbf{B}_{s} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$ 

- 8 SM signal and 12 background events in 2fb<sup>-1</sup> in most sensitive region
  - Background estimated from sidebands
  - Normalisation from  $B_d^{} \rightarrow J/\psi \; K^{\scriptscriptstyle +}$

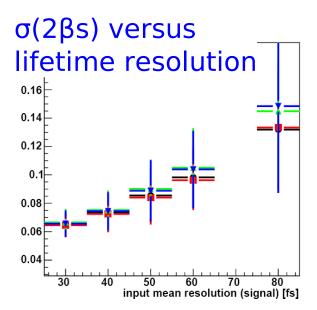
decay

With just 0.1 fb<sup>-1</sup> of data it will be world leading measurement.



90% Confidence limit with no signal observed

# $B_s \rightarrow J/\psi \phi$


The box diagram for  $\rm B_{s}$  oscillations is beginning to be understood

Oscillation period well measured by Tevatron

Phase  $2\beta_s$  is 2.2 $\sigma$  away from SM prediction

SM prediction 0.04, central experimental value 0.77.

LHCb will be able to improve results dramatically



Lifetime resolution of 39 fs Flavour tag efficiency of 6% In 2 fb<sup>-1</sup> of data: 100k signal events 50k background events  $\sigma(2\beta_s) = 0.03$ 

#### CP angle $\gamma$

Results shown as function of  $\delta_{B^o}$ , least well known parameter. Sensitivity of  $B^0 \rightarrow D^0 K^{*0}$  improves by factor of two in going from  $\delta_{B^o} = 45 \rightarrow 180^\circ$ . Residual dependence remains in global fit, but diluted due to other measurements.

| $\delta_{B^0}$ (°)                             | 0   | 45   | 90  | 135 | 180 |
|------------------------------------------------|-----|------|-----|-----|-----|
| $\sigma_{\gamma}$ for 0.5 fb <sup>-1</sup> (°) | 8.1 | 10.1 | 9.3 | 9.5 | 7.8 |
| $\sigma_{\gamma}$ for 2 fb <sup>-1</sup> (°)   | 4.1 | 5.1  | 4.8 | 5.1 | 3.9 |
| $\sigma_{\gamma}$ for 10 fb <sup>-1</sup> (°)  | 2.0 | 2.7  | 2.4 | 2.6 | 1.9 |

Weight (in %) of each contributing analysis with 2 fb<sup>-1</sup> for two values of  $\delta_{B^0}$ :

| Analysis                                                     | $\delta_{B^0}=0^\circ$ | $\delta_{B^0} = 45^\circ$ |
|--------------------------------------------------------------|------------------------|---------------------------|
| $B^- \to D^0(hh)K^-, B^- \to D^0(K^+\pi^{\mp}\pi^+\pi^-)K^-$ | 25                     | 38                        |
| $B^- \to D^0 (K_S^0 \pi^+ \pi^-) K^-$                        | 12                     | 25                        |
| $B^0 \rightarrow D^0(hh) K^{*0}$                             | 44                     | 8                         |
| $B_s \to D_s^{\mp} K^{\pm}$                                  | 16                     | 24                        |
| $B^0 \rightarrow D^{\mp} \pi^{\pm}$                          | 3                      | 5                         |

#### VMD

Vector mesons dominance.

From PDG :

 $BR(B^{0} \rightarrow K^{*}\gamma) = 4.0 \ 10^{-5}$ 

 $BR(B^{0} \rightarrow K^{*} \rho) = 5.6 \ 10^{-6}$ 

BR(B<sup>0</sup>- $K^*\omega$ ) < 4.2 10<sup>-6</sup>

 $BR(B^0 \rightarrow K^* \Phi) = 9.5 \ 10^{-6}$ 

The leptonic BR of the vector mesons are :  $BR(\Phi \rightarrow e) = 3.0 \ 10^{-4}$   $BR(\rho \rightarrow e) = 7.2 \ 10^{-5}$  $BR(\omega \rightarrow e) < 4.7 \ 10^{-5}$ 

From Grossman and Pirjoj BR(BR( $B^0 \rightarrow K^*ee$ ) = 215 10<sup>-9</sup> with 30 MeV < M(ee) < 1 GeV

 $BR(B^{0} - K^{*}\rho) \qquad \Rightarrow BR(B^{0} - K^{*}ee) = .26 \ 10^{-9}$ 

BR(B<sup>0</sup>- $K^*\omega$ )  $\Rightarrow$  BR(B<sup>0</sup>- $K^*ee$ ) < .30 10<sup>-9</sup>

 $BR(B^{0} - K^{*}\Phi) \qquad \Rightarrow BR(B^{0} - K^{*}ee) = 2.8 \ 10^{-9}$ 

Extremely small for  $\rho$  and  $\omega \Rightarrow$  even with interference the effect will be quite small

In the  $\rho$  range (600-900 MeV) the direct amplitude comtibutes 24.6  $10^{.9}$   $\Rightarrow$  interference effect < 20 %

In the  $\Phi$  range (1015-1025) : effect larger but outside our window.

