SUSY GUTs with Yukawa unification: the (major) role of FCNCs

Diego Guadagnoli Technical University Munich & CERN

Based on:

Altmannshofer, DG, Raby, Straub

See also: Albrecht, Altmannshofer, Buras, DG, Straub

Exp. determined SM couplings + SM becomes supersymmetric above O(1 TeV)

This observed gauge

coupling unification

Couplings numerically unify (w/ remarkable accuracy) at a high scale $M_G \approx O(10^{16} \text{ GeV})$ a (remarkable) coincidence

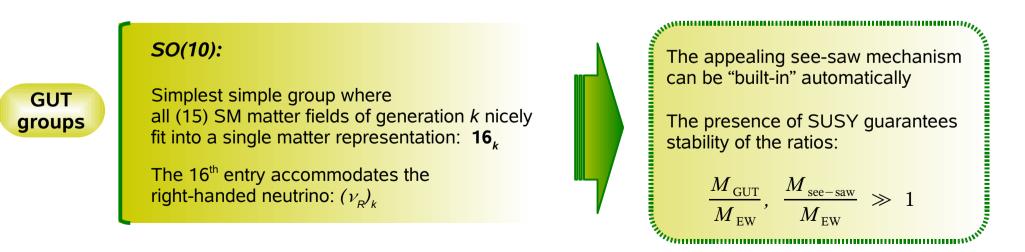
✓ first hint to a grand unified theory embedding the SM

is very weakly dependent on the details of the SUSY spectrum assumed

- happens at just the "right" scale M_{g} :
 - M_{g} > scale where unacceptably large proton decay is generic
 - M_{g} < Planck scale, where the calculation wouldn't be trustworthy

Introductory remarks

Exp. determined SM couplings + SM becomes supersymmetric above O(1 TeV)



Couplings numerically unify (w/ remarkable accuracy) at a high scale $M_G \approx O(10^{16} \text{ GeV})$ a (remarkable) coincidence

✓ first hint to a grand unified theory embedding the SM

is very weakly dependent on the details of the SUSY spectrum assumed

- This observed gauge coupling unification
- happens at just the "right" scale M_{g} :
 - M_G > scale where unacceptably large proton decay is generic
 - M_{g} < Planck scale, where the calculation wouldn't be trustworthy

D. Guadagnoli, Collider-Flavor Interplay Meeting, CERN, Mar 16 – 18, 2009

Looking for further SUSY GUT tests

Generic predictions (besides coupling unification)

- **proton decay** [See *e.g.*: Dermisek, Mafi, Raby]
- SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Looking for further SUSY GUT tests

5

5

Generic predictions (besides coupling unification)

proton decay [See *e.g.*: Dermisek, Mafi, Raby]

SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

Predicted pattern of SUSY masses needs specification of

- the mechanism of SUSY breaking
- the form Yukawa couplings have at the high scale

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Looking for further SUSY GUT tests

Generic predictions (besides coupling unification)

proton decay [See *e.g.*: Dermisek, Mafi, Raby]

SUSY between the Fermi and the GUT scale, hence, presumably, TeV-scale sparticles

Predicted pattern of SUSY masses needs specification of

- the mechanism of SUSY breaking
- the form Yukawa couplings have at the high scale

Hypothesis:

5

5

Yukawa coupling unification (across each matter multiplet)

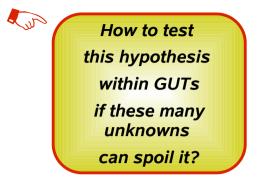
- Generically also model-dependent (e.g. threshold corrections, role of higher-dim operators)
- However, for the 3rd generation: $Y_t \simeq Y_b \simeq Y_\tau \simeq Y_v$ it remains an appealing possibility

However, in both cases detailed predictions require further model assumptions.

Are "robust" tests possible?

Note:

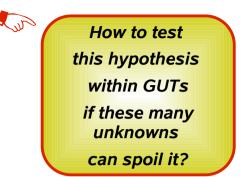
Yukawa interactions have dim 4.


It's not unlikely that they preserve info about the symmetries of the UV theory

D. Guadagnoli, Collider-Flavor Interplay Meeting, CERN, Mar 16 – 18, 2009

3rd generation Yukawa unification (YU)

YU depends:


- on tan β being large, O(50).
- 2000 minimum mi Hall, Rattazzi, Saria - on the details of the SUSY spectrum, since YU receives **EW-scale threshold corrections, growing with growing tan** β

generation Yukawa unification (YU) 3rd

YU depends:

- on tan β being large, O(50).
- Hall, Rattazzi, Sarid annannannannanna. - on the details of the SUSY spectrum, since YU receives **EW-scale threshold corrections, growing with growing tan** β

Turn the argument around

- Assume exact YU \mathbf{N}
- Impose the constraints from the observed $\mathbf{\nabla}$ top, bottom and tau masses

Learn about the implied GUT-scale parameter space

Blazek, Dermisek, Raby

Assuming universal GUT-scale mass terms for sfermions (m_{16}, A_0) and for gauginos $(m_{1/2})$, one preferred region emerges:

$$A_0 \approx -2m_{16}, \quad \mu, m_{1/2} \ll m_{16}$$

These relations automatically lead to Inverted Scalar Mass Hierarchy

generation Yukawa unification (YU)

YU depends:

- on tan β being large, O(50).

Turn the argument around

top, bottom and tau masses

Assume exact YU

Hall, Rattazzi, Sarid - on the details of the SUSY spectrum, since YU receives **EW-scale threshold corrections, growing with growing tan** β

How to test this hypothesis within GUTs if these many unknowns can spoil it?

Assuming universal GUT-scale mass terms for sfermions (m_{16}, A_0) and for gauginos $(m_{1/2})$, one preferred region emerges:

L.J

$$A_0 \approx -2m_{16}, \quad \mu, m_{1/2} \ll m_{16}$$

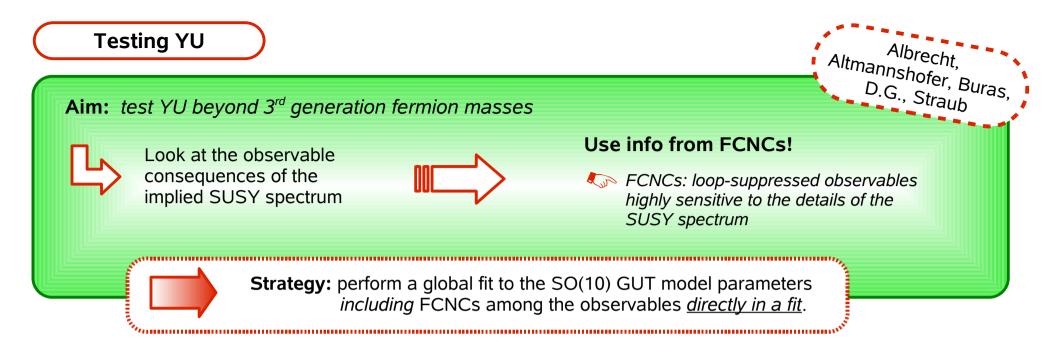
These relations automatically lead to Inverted Scalar Mass Hierarchy

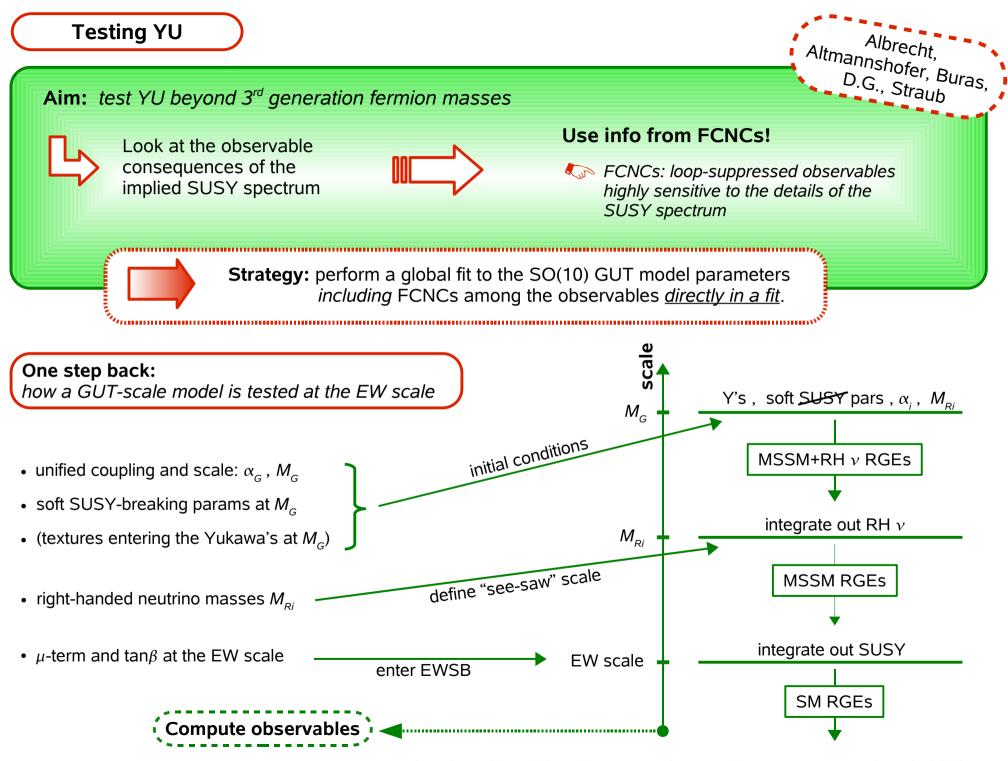
Can one perform a deeper test of the model?

Since YU is sensitive to the whole SUSY spectrum,

to really test YU one needs additional observables, able to constrain the spectrum itself

Concrete example


Dermisek+Raby SO(10) SUSY GUT with a D₃ family symmetry


Successfully describes EWPO, \mathbf{N} quark and lepton masses, CKM, PMNS.

Blazek, Dermisek, Raby Impose the constraints from the observed

Learn about the implied GUT-scale parameter space

 $\mathbf{\nabla}$

D. Guadagnoli, Collider-Flavor Interplay Meeting, CERN, Mar 16 – 18, 2009

Short remarks on the procedure

All our conclusions are assessed through a fitting procedure (manifestly parameterization invariant) i.e. by minimizing a χ^2 function defined as:

$$f_i$$
 = model prediction for O_i

$$X^{2}[\text{model pars}] \equiv \sum_{i=1}^{N_{obs}} \frac{\left(f_{i}[\text{model pars}] - O_{i}\right)^{2}}{\left(\sigma_{i}^{2}\right)_{exp} + \left(\sigma_{i}^{2}\right)_{theo}} \qquad \{O_{i}\} = \begin{cases} \{M_{W}, M_{Z}, G_{F}, \alpha_{e.m.}, \alpha_{s}, M_{t}, m_{b}(m_{b}), M_{\tau}\} \\ \{\Delta M_{s} / \Delta M_{d}, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} l^{+}l^{-}, B \rightarrow \tau \nu\} \end{cases}$$

+ bounds on

- lightest Higgs,
- lightest part of SUSY spectrum,

•
$$B_s \rightarrow \mu^+ \mu^-$$

Short remarks on the procedure

 \checkmark

 \checkmark

All our conclusions are assessed through a fitting procedure (manifestly parameterization invariant) i.e. by minimizing a χ^2 function defined as:

$$f_i = \text{model prediction for } O_i$$

$$\chi^{2}[\text{model pars}] \equiv \sum_{i=1}^{N_{obs}} \frac{\left(f_{i}[\text{model pars}] - O_{i}\right)^{2}}{(\sigma_{i}^{2})_{exp} + (\sigma_{i}^{2})_{theo}} \quad \{O_{i}\} = \begin{cases} \{M_{w}, M_{z}, G_{F}, \alpha_{e.m.}, \alpha_{s}, M_{t}, m_{b}(m_{b}), M_{\tau}\} \\ \{\Delta M_{s} / \Delta M_{d}, B \rightarrow X_{s} \gamma, B \rightarrow X_{s} | \uparrow I, B \rightarrow \tau \gamma \} \end{cases}$$

- + bounds on
 - lightest Higgs,
 - lightest part of SUSY spectrum,

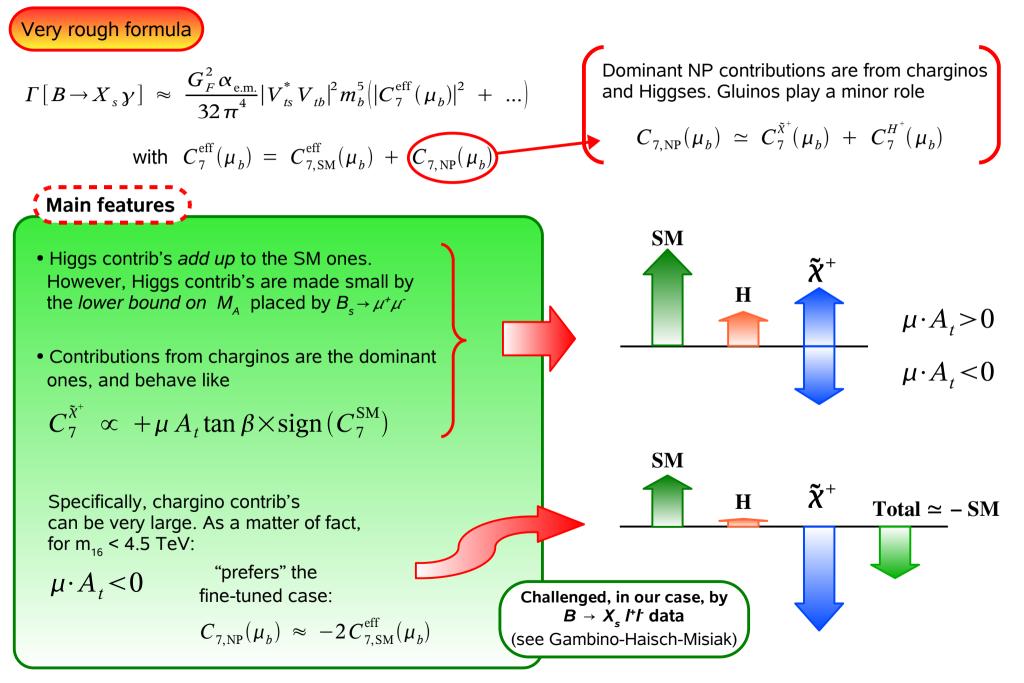
• $B_s \rightarrow \mu^+ \mu^-$

Given the inverted scalar mass hierarchy, and being Yukawa also hierarchical, it is enough to parameterize the high-scale Yukawa's as

Our conclusions are *independent* from the specific flavor model embedded in the SUSY GUT

$$Y_{u,d} = \text{diag}\{0, 0, \lambda_{u,d}\}$$

The two crucial FCNCs: $B_s \rightarrow \mu^+ \mu^-$ vs. $B \rightarrow X_s \gamma$ A generic expectation in YU is large $\tan\beta$ \Rightarrow All the FCNCs need to be computed in the MSSM with large $\tan\beta$ $\square BR[B_s \to \mu^+ \mu^-]$ Enhancement going as: BR $[B_s \rightarrow \mu^+ \mu^-] \propto A_t^2 \frac{\tan^6 \beta}{M_A^4}$ For large $tan\beta$ (and sizable *A*,), $h^0,\ H^0,\ A^0$ dominated by double penguins with neutral Higgses $\tan^2 \beta$ Upper bound from CDF Generic bound valid for all $BR[B_s \to \mu^+ \mu^-]_{exp} < 5.8 \times 10^{-8}$ $M_{_{A}} > 500 \text{ GeV}$ the heavy Higgs masses in our class of models $\mathbf{\nabla} \quad \mathbf{BR} \left[\mathbf{B} \to \mathbf{X}, \mathbf{\gamma} \right]$ $BR[B \to X_{s} \gamma]_{E_{v} > 1.6 \text{GeV}}^{exp} = (3.55 \pm 0.26) \times 10^{-4}$ {HFAG average } The theory prediction for $B \to X_{s} \gamma$ must be "SM-like" Misiak *et al.,* PRL '07 $BR[B \to X_{s} \gamma]_{E_{v} > 1.6 GeV}^{SM} = (3.15 \pm 0.23) \times 10^{-4}$

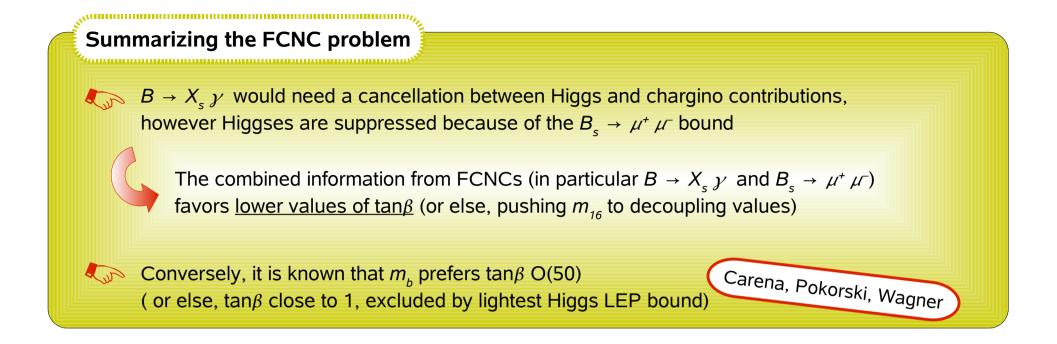

 \checkmark BR $[B \rightarrow X_s \gamma]$ [continued]

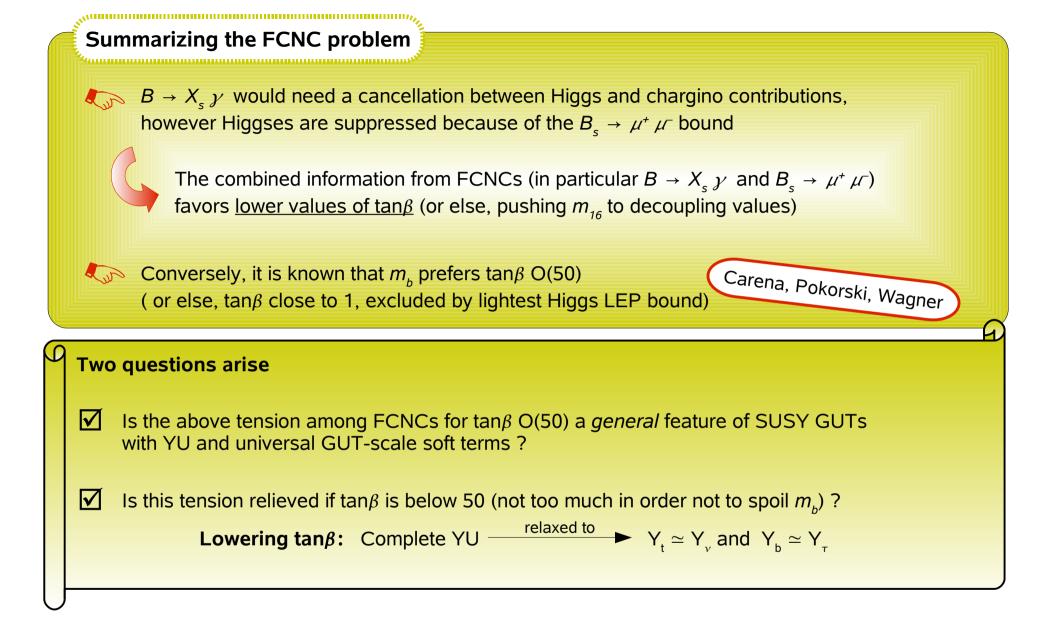
Very rough formula Dominant NP contributions are from charginos $\Gamma[B \to X_{s} \gamma] \approx \frac{G_{F}^{2} \alpha_{e.m.}}{32 \pi^{4}} |V_{ts}^{*} V_{tb}|^{2} m_{b}^{5} (|C_{7}^{eff}(\mu_{b})|^{2} + ...)$ and Higgses. Gluinos play a minor role $C_{7,NP}(\mu_b) \simeq C_7^{\tilde{\chi}^+}(\mu_b) + C_7^{H^+}(\mu_b)$ with $C_{7}^{\text{eff}}(\mu_{b}) = C_{7,\text{SM}}^{\text{eff}}(\mu_{b}) + (C_{7,\text{NP}}(\mu_{b}))$ Main features • Higgs contrib's add up to the SM ones. However, Higgs contrib's are made small by the *lower bound on* M_A placed by $B_s \rightarrow \mu^+ \mu^-$

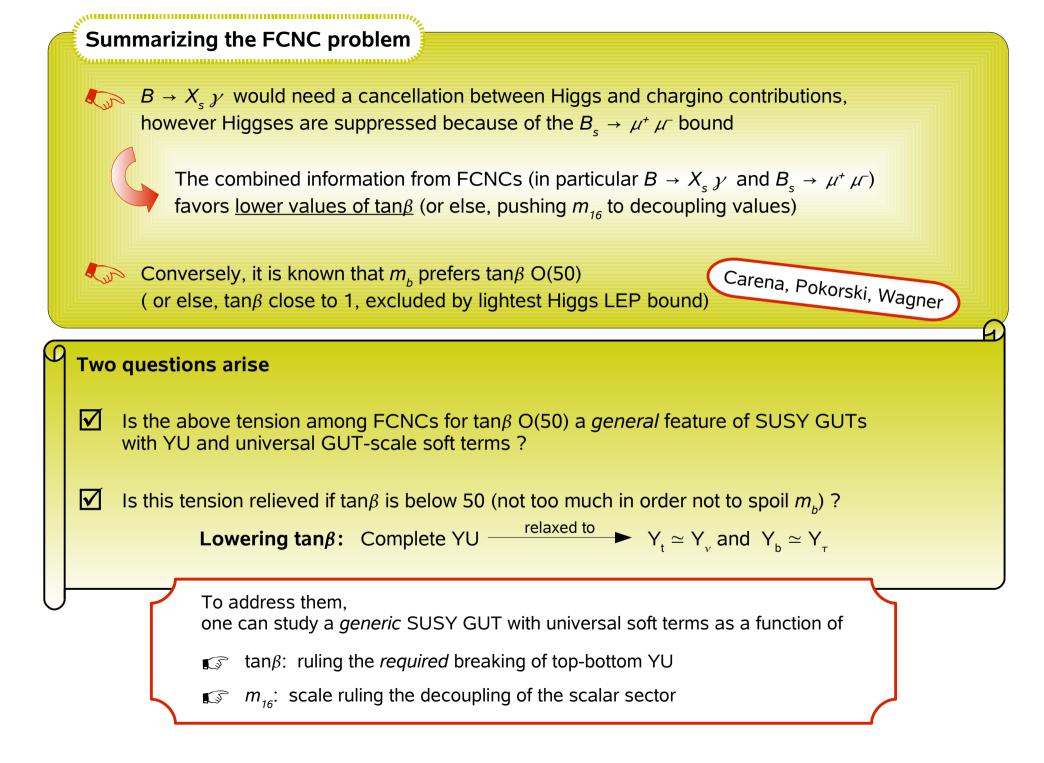
 \checkmark BR $[B \rightarrow X_s \gamma]$ [continued]

Very rough formula Dominant NP contributions are from charginos $\Gamma[B \to X_{s} \gamma] \approx \frac{G_{F}^{2} \alpha_{\text{e.m.}}}{32 \pi^{4}} |V_{ts}^{*} V_{tb}|^{2} m_{b}^{5} (|C_{7}^{\text{eff}}(\mu_{b})|^{2} + ...)$ and Higgses. Gluinos play a minor role $C_{7,NP}(\mu_b) \simeq C_7^{\tilde{\chi}^+}(\mu_b) + C_7^{H^+}(\mu_b)$ with $C_{7}^{\text{eff}}(\mu_{b}) = C_{7,\text{SM}}^{\text{eff}}(\mu_{b}) + (C_{7,\text{NP}}(\mu_{b}))$ Main features SM • Higgs contrib's add up to the SM ones. However, Higgs contrib's are made small by Η the *lower bound on* M_{A} placed by $B_{c} \rightarrow \mu^{+}\mu^{-}$ $\mu \cdot A_t > 0$ $\mu \cdot A_t < 0$ • Contributions from charginos are the dominant ones, and behave like $C_7^{\tilde{\chi}^+} \propto + \mu A_t \tan \beta \times \operatorname{sign}(C_7^{\mathrm{SM}})$

 \checkmark BR [$B \rightarrow X_s \gamma$] [continued]

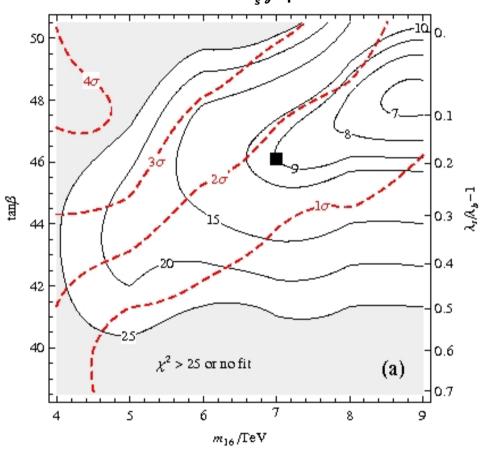


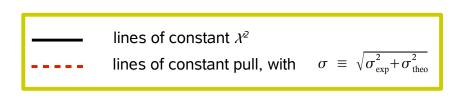

D. Guadagnoli, Collider-Flavor Interplay Meeting, CERN, Mar 16 – 18, 2009

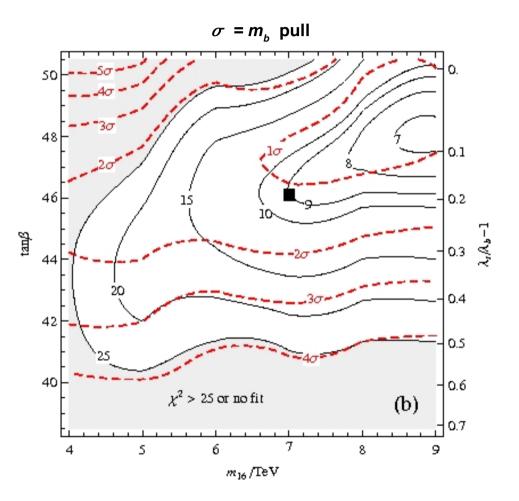

Summarizing the FCNC problem

 $B \rightarrow X_s \gamma$ would need a cancellation between Higgs and chargino contributions, however Higgses are suppressed because of the $B_s \rightarrow \mu^+ \mu^-$ bound

The combined information from FCNCs (in particular $B \to X_s \gamma$ and $B_s \to \mu^+ \mu^-$) favors lower values of tan β (or else, pushing m_{16} to decoupling values)

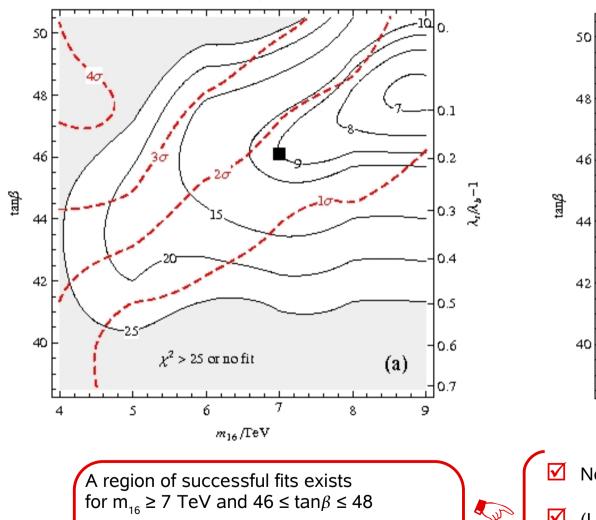


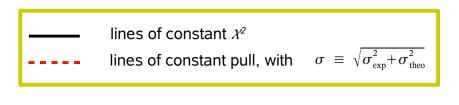

Results: Ouestion 1 Is the above mentioned tension among FCNCs for $tan\beta$ O(50) a general feature of SUSY GUTs with exact YU and universal GUT-scale soft terms ? exact YU 40 Main comment For any $m_{16} \leq 9$ TeV, $(\chi^2)_{\rm tot}$ else agreement among FCNCs is only achieved at the price of 30 decoupling in the scalar sector χ^2 contribution mb 20 10 $B \rightarrow X_s \gamma$ "Good" fit (đ) Disclaimer: 0 Needless to say, this test 7 б 5 8 9 4 cannot be attached a statistically rigorous meaning $m_{16}/{\rm TeV}$

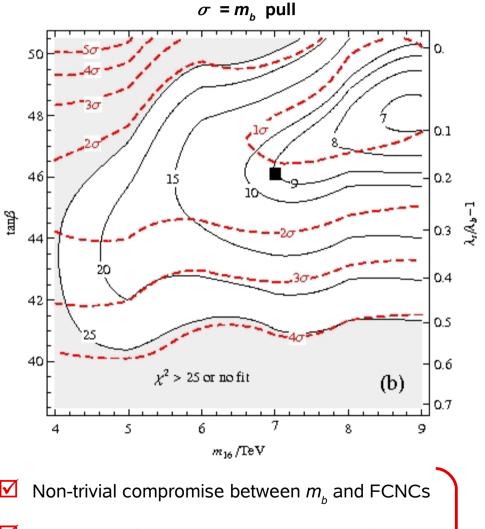

Results: Question 2

Is this tension relieved if tan β is below 50 i.e. with YU relaxed to $Y_t \simeq Y_y$ and $Y_b \simeq Y_{\tau}$?

 $\sigma = B \rightarrow X_s \gamma$ pull




Results: Question 2


Is this tension relieved if tan β is below 50 i.e. with YU relaxed to $Y_t \simeq Y_y$ and $Y_b \simeq Y_\tau$?

 $\sigma = B \rightarrow X_s \gamma \text{ pull}$

moderate breaking of t - b unification

✓ (Light part of) SUSY spectrum basically fixed. E.g. lightest stop \approx 800 GeV

D. Guadagnoli, Collider-Flavor Interplay Meeting, CERN, Mar 16 – 18, 2009

1. Go/No-go message

Assuming GUT-scale universalities for the soft SUSY-breaking terms, YU is phenomenologically viable only invoking decoupling of the sfermion spectrum.

Else, viability is recovered without decoupling if YU *is broken to separate* t - v *and* $b - \tau$ YU. *This breaking must be moderate,* O(10-20%)

These conclusions are the result of two non-trivial interplays:

- One among FCNCs, mostly the decays $B_s \to \mu^+ \mu^-$, $B \to X_s \gamma$ and $B \to X_s \ell^+ \ell^-$
- One between (mostly) $B \rightarrow X_s \gamma$ and the bottom mass

.....

2. Is the moderate-breaking scenario falsifiable ?

Yes. The requirement of $b - \tau$ unification & the cross fire of the m_b and FCNC constraint allow for robust predictions for the lightest SUSY spectrum and various FCNCs

Observable	Exp.	Fit	Pull
M_W	80.403	80.56	0.4
M_Z	91.1876	90.73	1.0
$10^5 G_{\mu}$	1.16637		0.3
$1/\alpha_{em}$	137.036	136.5	0.8
$\alpha_s(M_Z)$	0.1176	0.1159	0.8
M_t	170.9	171.3	0.2
$m_b(m_b)$	4.20	4.28	1.1
M_{τ}	1.777	1.77	0.4
$10^4 \text{ BR}(B \rightarrow X_s \gamma)$	3.55	2.72	1.6
$10^6 \text{ BR}(B \rightarrow X_s \ell^+ \ell^-)$		1.62	0.0
$\Delta M_s / \Delta M_d$	35.05	32.4	0.7
$10^4 \operatorname{BR}(B^+ \to \tau^+ \nu)$	1.41	0.726	1.4
$10^8 \text{ BR}(B_s \rightarrow \mu^+ \mu^-)$	< 5.8	$\frac{3.35}{\text{stal }\chi^2}$:	-

TABLE IV: Example of successful fit in the region with $b - \tau$ unification. Dimensionful quantities are expressed in powers of GeV. Higgs, lightest stop and gluino masses are pole masses, while the rest are running masses evaluated at M_Z .

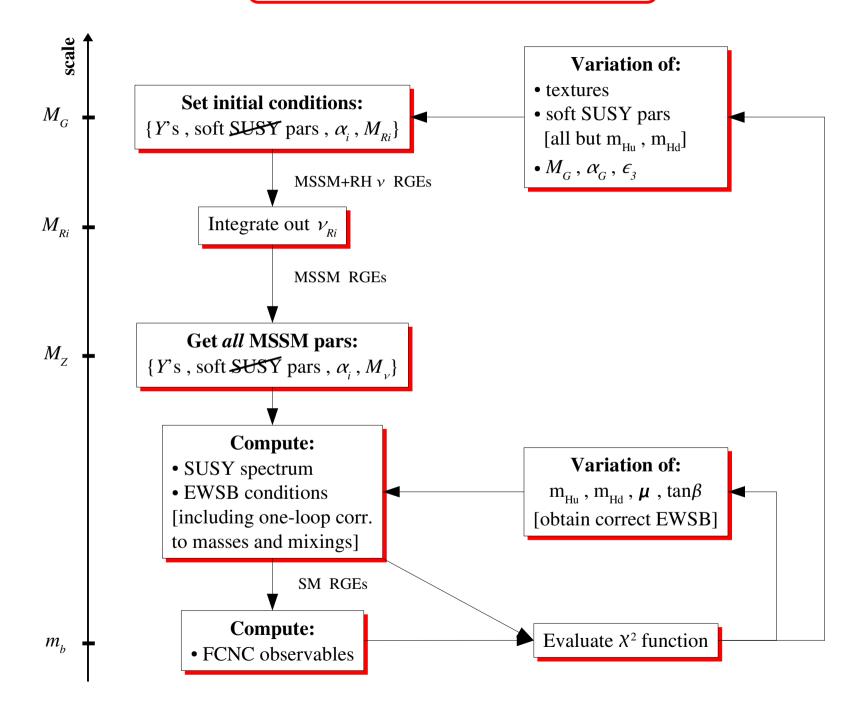
Discovering or excluding this scenario will be within reach of the LHC

3. Topics for the final discussion

(a) It would be useful if Atlas / CMS considered also viable Yukawa-unified GUT scenarios in production runs.

These scenarios are not less compelling than the CMSSM and spectrum files in the viable regions are available

- A useful study of the LHC prospects for these scenarios has been presented in Baer, Kraml, Sekmen, Summy, JHEP 08.


Starting point for production runs including hadronization & detector effects

(We are also taking steps in this direction with Atlas colleagues in Munich)

(b) Difficult to overemphasize the importance of an *accurate* determination of $BR[B_s \rightarrow \mu^{+} \mu^{-}]$ (LHCb and Atlas / CMS) and $BR[B \rightarrow \tau \nu]$ (Super Flavor Factory)

Backup Slides

Detailed chart of the fitting procedure

