Anomaly Mediation and Flavour Physics

Ben Allanach, Gudrun Hiller, Tim Jones and Pietro Slavich.

drtj@liv.ac.uk

CERN, March 2009

The MSSM and MSUGRA

The MSSM has a large set of soft supersymmetry breaking terms. Most analyses use MSUGRA which features at the gauge unification scale:

- Unification of the soft supersymmetry-breaking $\phi^* \phi$ scalar masses
- Unification of the gaugino masses
- Cubic scalar ϕ^3 interactions of the same form as the Yukawa couplings and related to them by a common constant of proportionality, the *A* parameter.

AMSB is an attractive alternative to this orthodoxy.

AMSB

Anomaly mediated supersymmetry breaking takes an elegant form.

In AMSB, the running $\phi^* \phi$ masses, m^2 , ϕ^3 couplings, h, and gaugino masses, M are all determined by the appropriate power of the gravitino mass multiplied by perturbatively calculable functions of the dimensionless couplings of the underlying supersymmetric theory. These results are **RENORMALISATION GROUP INVARIANT**.

The AMSB forms for M, h and m^2 are obtained if the only source of breaking is a vev in the supergravity multiplet itself.

AMSB

$$M = m_{3/2}\beta_g/g$$

$$h = -m_{3/2}\beta_Y$$

$$m^2 = \frac{1}{2}m_{3/2}^2\mu \frac{d}{d\mu}\gamma$$

$$b = \kappa m_{3/2}\mu - m_{3/2}\beta_\mu$$

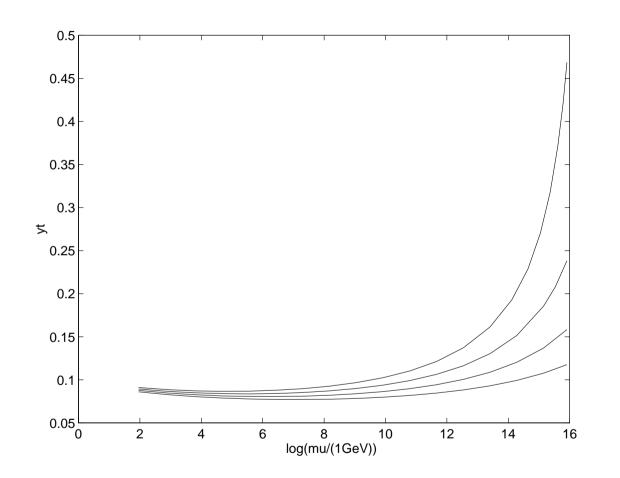
The form of the *b*-term is more model dependent than the other soft breaking terms. Hence we can determine the Higgs *B* parameter (along with the μ term) as usual by the minimisation of the scalar potential. Note that the arbitrary parameter κ will be determined to be rather small.

Gaugino, Quark and Slepton Masses

$$\begin{split} M_i &\sim & \beta_{g_i} \\ m^2 &\sim & \left[\beta_Y \cdot \frac{\partial}{\partial Y} + \beta_g \cdot \frac{\partial}{\partial g} \right] \left(Y^2 - g^2 + \cdots \right) \\ \text{where} \\ &\beta_Y \sim Y(Y^2 - g^2), \qquad \beta_g \sim g^3 \end{split}$$

- $M_2 < M_1$ and $M_3 < 0$.
- m^2 is a power series in the Yukawa matrices (MFV)
- flavour violation is suppressed if $\beta_Y \to 0$.
- there are tachyonic sleptons

The Infrared Quasi-Fixed Point



Plot of y_t against $\log_{10} \frac{\mu}{1 \text{ GeV}}$ for various values of $y_t(M_X)$

Slepton Mass Fixes

A common scalar mass:

(1)
$$(\overline{m}^2)^i{}_j = \frac{1}{2}m_{3/2}^2\mu \frac{d}{d\mu}\gamma^i{}_j + m_0^2\delta^i{}_j$$

or Fayet-Iliopoulos terms:

(2)
$$(\overline{m}^2)^i{}_j = \frac{1}{2}m_{3/2}^2\mu \frac{d}{d\mu}\gamma^i{}_j + \xi \mathcal{Y}_i \delta^i{}_j$$

or *R*-parity violating terms:

(3)
$$W \to W + \lambda L \overline{EE}$$

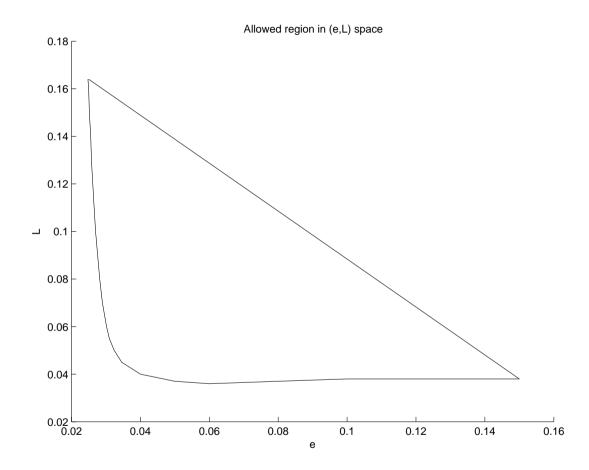
Anomaly-free U(1) symmetries

The MSSM (including right-handed neutrinos) admits two independent generation-blind anomaly-free U_1 symmetries:

Anomaly free U(1) symmetry for arbitrary lepton doublet and singlet charges.

Choose both L > 0 and e > 0 to solve the slepton problem. Range of allowed e, L turns out to be restricted.

Allowed Range of e, L



Allowed region of (e, L) space for $m_0 = 40$ TeV and $\tan \beta = 10$.

The Sparticle Spectrum

The mass spectrum (in GeV) for

• $m_0 = 40$ TeV, $\tan \beta = 10$, L = 0.3, e = 0.3

\tilde{g}	$ ilde{t}_1$	$ ilde{t}_2$	\widetilde{u}_L	$ ilde{u}_R$	$ ilde{b}_1$	\widetilde{b}_2	\widetilde{d}_L	\widetilde{d}_R
890	763	576	818	785	727	900	822	909
$ ilde{ au}_1$	$ ilde{ au}_2$	$ ilde{e}_L$	$ ilde{e}_R$	$ ilde{ u}_e$	$ ilde{ u}_{ au}$	h	H	A
131	191	158	177	137	133	117	455	454
	H^{\pm}	χ_1	χ_2	χ_3	χ_4	χ_1^{\pm}	χ_2^{\pm}	
	462	130	362	599	609	130	606	
$\chi_1^{\pm} - \chi_1$ (MeV) 194								

Flavour-Violating Mass Insertions

We begin by choosing a basis such that the Yukawa matrices are

 $Y_U = V^T \operatorname{diag}(\lambda_u, \lambda_c, \lambda_t), \qquad Y_D = \operatorname{diag}(\lambda_d, \lambda_s, \lambda_b)$

where V is the CKM matrix,

Then we rotate both quarks and squarks to the quark-mass diagonal (super-CKM) basis.

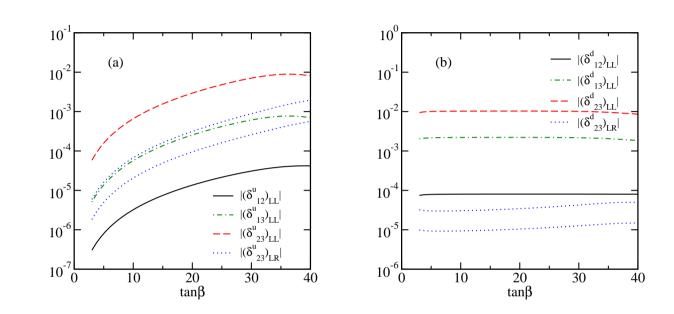
It is then useful to look at the approximation where we retain only λ_t, λ_b .

Flavour-Violating Mass Insertions

At one loop we find, (showing here only terms that contribute when $i \neq j$)

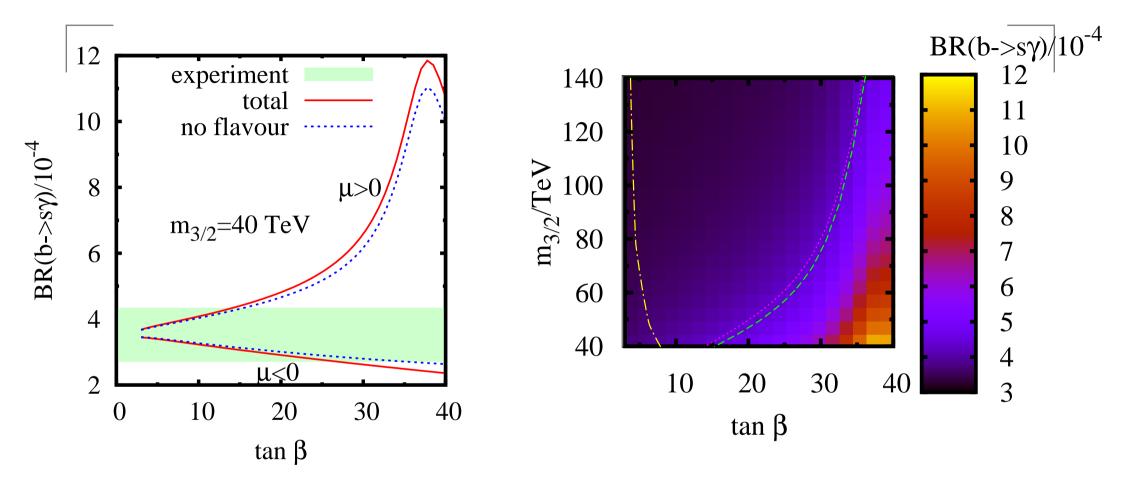
$$\begin{pmatrix} m_{\tilde{U}_{L}}^{2} \end{pmatrix}_{ij} = \frac{m_{3/2}^{2}}{(16\pi^{2})^{2}} \begin{bmatrix} V_{ib}V_{jb}^{*}\lambda_{b}^{2}(\hat{\beta}_{\lambda_{b}} - \lambda_{t}^{2}) \\ + \lambda_{t}^{2}\lambda_{b}^{2}(\delta_{i3}V_{jb}^{*}V_{tb} + \delta_{j3}V_{ib}V_{tb}^{*}) \end{bmatrix} \\ \begin{pmatrix} \hat{h}_{U} \end{pmatrix}_{ij} = -\delta_{i3}\frac{m_{3/2}}{16\pi^{2}}\lambda_{t} \begin{bmatrix} \lambda_{b}^{2}V_{jb}^{*}V_{tb} \end{bmatrix} \\ \begin{pmatrix} m_{\tilde{D}_{L}}^{2} \end{pmatrix}_{ij} = \frac{m_{3/2}^{2}}{(16\pi^{2})^{2}} \begin{bmatrix} V_{ti}^{*}V_{tj}\lambda_{t}^{2}(\hat{\beta}_{\lambda_{t}} - \lambda_{b}^{2}) \\ + \lambda_{t}^{2}\lambda_{b}^{2}(\delta_{j3}V_{ti}^{*}V_{tb} + \delta_{i3}V_{tj}V_{tb}^{*}) \end{bmatrix} \\ (h_{D})_{ij} = -\delta_{j3}\frac{m_{3/2}}{16\pi^{2}}\lambda_{b} \begin{bmatrix} \lambda_{t}^{2}V_{ti}V_{tb}^{*} \end{bmatrix}$$

Flavour-Violating Mass Insertions



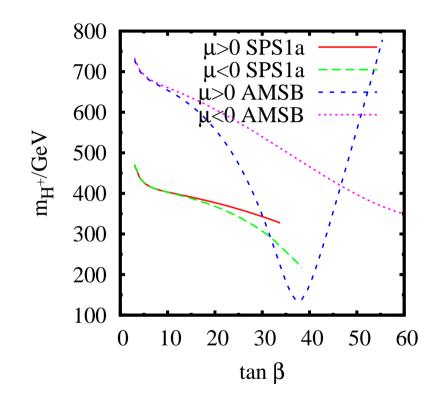
Magnitudes of mass insertions $\delta_{ij}^q = (m_{\tilde{q}}^2)_{ij}/\sqrt{(m_{\tilde{q}}^2)_{ii}(m_{\tilde{q}}^2)_{jj}}$ as functions of $\tan \beta$, for $m_{3/2} = 40, 140$ TeV. Closest GGMS bound is $(\delta_{13}^d)_{LL} < 0.16$.

 $B \to X_s \gamma$ Decay



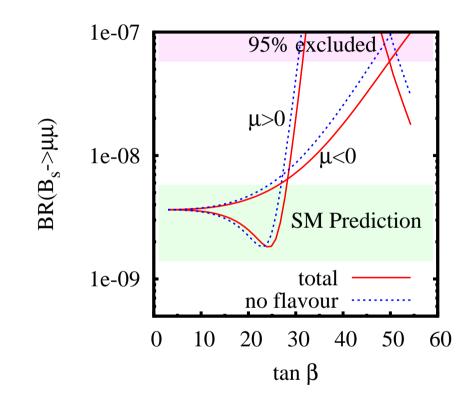
Constraints on the AMSB parameter space from the rare decay $B \rightarrow X_s \gamma$ as a function of $\tan \beta$ for $m_{3/2} = 40$ TeV.

The Charged Higgs Mass



The charged Higgs boson mass as a function of $\tan \beta$ in mSUGRA model SPS1a and pure AMSB with $m_{3/2} = 40$ TeV.

$B_s \rightarrow \mu \mu \, {\rm decay}$



BR($B_s \rightarrow \mu\mu$) in pure AMSB. Also shown is the standard model prediction and the current experimental upper bound. For $\mu > 0$, we predict the $B_s \rightarrow \mu\mu$ branching ratio does not exceed its standard model value

$B \to \tau \nu \operatorname{decay}$

The susy contribution is dominated by the charged higgs:

$$R_{\tau\nu} \equiv \frac{\mathsf{BR}(B \to \tau\nu)}{\mathsf{BR}(B \to \tau\nu)_{\rm SM}} = \left(1 - \frac{m_B^2}{m_{H^{\pm}}^2} \frac{\tan^2\beta}{1 + \epsilon_g \tan\beta}\right)^2$$

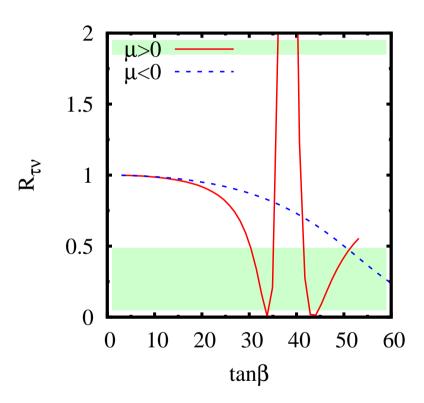
where

$$\mathsf{BR}(B \to \tau \nu)_{\rm SM} = 1.29 \times 10^{-4} \left(\frac{|V_{ub}|}{3.95 \cdot 10^{-3}}\right)^2 \left(\frac{f_B}{0.216 \,\mathrm{GeV}}\right)^2,$$

and

$$R_{\tau\nu}^{exp} = 1.17 \pm 0.34.$$

$B\to \tau\nu~{\rm decay}$



The ratio $R_{\tau\nu}$ in pure AMSB for $m_{3/2} = 40$ TeV and either sign of μ . The green regions are disfavoured at the 2σ level.

Muon anomalous magnetic moment

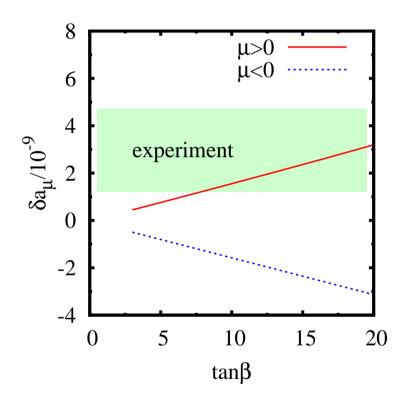
Relying on e^+e^- data, one finds

$$\delta a_{\mu} \equiv \delta \frac{(g-2)_{\mu}}{2} = (29.5 \pm 8.8) \times 10^{-10}$$

as the discrepancy between the empirical value and the Standard Model (standard model) prediction. The one-loop gaugino contribution to this is given at large $\tan \beta$ by

$$a_{\mu}^{SUSY} \approx \frac{m_{\mu}^2 \mu \tan \beta}{16\pi^2} \left(g_1^2 M_1 F_1 + g_2^2 M_2 F_2 \right),$$

where $F_{1,2}$ are positive definite functions. So a supersymmetric explanation of δa_{μ} favours $\mu > 0$.



Supersymmetric contribution to the anomalous magnetic moment of the muon in U(1)' AMSB, for $m_{3/2} = 40$ TeV. Compatible with both δa_{μ} and $B \rightarrow X_s \gamma$ if $\mu > 0$ and $8 < \tan \beta < 14$.

Conclusions

AMSB leads to a distinctive and constrained particle spectrum, easily distinguishable from mSUGRA, with a light wino and distinctive sum rules for the sparticle masses.

The flavour changing signals of AMSB are MFV in character: they feature CKM-induced CP asymmetries and CKM relations between $b \rightarrow s$ and $b \rightarrow d$ processes.

Flavour violation is naturally suppressed for small $\tan \beta$, because with small $\tan \beta$ we are near the top quark Yukawa IRQFP, where $\beta_{\lambda_t} \approx 0$.

We have shown explicitly that there are regions of AMSB parameter space that can accommodate the measurements of the $B \rightarrow X_s \gamma$ branching ratio as well as the anomalous magnetic moment of the muon.