Top Quark Compositeness feasibility and implications

Javi serra
universítat Autònoma de Barcelona
work in collaboration with A.Pomarol
Phys.Rev., D78,075026 (2008)
interplay of collider and Flavour Physics, 2 nd general meeting 16-18 March 2009

Outline
Describe the composite top scenario in the framework of modern strongly-interacting theories of EWSB and give the main constraints and experimental signatures.

X Why the ton?
X Framework
X Feasibility
X Jmplications
X Conclusions

Why the top?
LED \rightarrow most fermions = point-like particles not for the top Why?

BSM sector responsible for EWSB + masses: (SM = without the riggs)
X Weak coupling: fundamental Higgs + susy (naturalness), top is not special
X Strong coupling: Technicolor or Composite Higgs,

BSM physics (operators) couples to fermions proportionally to mass
x Top quark the most sensitive fermion to the BSM sector.
x Top quark has properties of composite state.

Frame 1: BSM sector

proto-Yukawa interactions

Model independent analysis: strong sector characterized by

Frame 2: Partial Compositeness

SM fermions get their masses by mixing with resonances
x perturbative picture:

$$
y_{t} \sim g_{\rho} \frac{m_{L} m_{R}}{M_{Q} M_{T}}
$$

x non-perturbative picture:

$$
\mathcal{L}=m_{L} \bar{q}_{L}^{\mathrm{el}} Q_{R}^{q}+m_{R} \bar{t}_{R}^{\mathrm{el}} T_{L}^{t}+M_{Q} \bar{Q}_{L} Q_{R}+M_{T} \bar{T}_{R} T_{L}+g_{\rho} \bar{Q}_{L} \Sigma T_{R}+\cdots
$$

$Q, T=$ BSM resonances
\downarrow diagonalization
massless states: $\quad q_{L}=\cos \theta_{L} q_{L}^{\mathrm{el}}+\sin \theta_{L} Q_{L}^{q}, \quad \tan \theta_{L}=\frac{m_{L}}{M_{Q}}$,

$$
t_{R}=\cos \theta_{R} t_{R}^{\mathrm{el}}+\sin \theta_{R} T_{R}^{t}, \quad \tan \theta_{R}=\frac{m_{R}}{M_{T}}
$$

top Yukawa: $y_{t}=\sin \theta_{L} g_{\rho} \sin \theta_{R}$

Frame 3: Composite Cimit
extrema of partial compositeness
composite $q_{L}:\left\{\begin{array}{c}\sin \theta_{L} \rightarrow 1 \\ m_{L} \rightarrow m_{\rho}\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}q_{L} \simeq Q_{L}^{q} \\ M_{Q} \ll m_{L}\end{array}\right\}$
if Q_{L} in higher representation (of global symmetry of strong sector):

$$
q_{L} \in Q_{L}=\left(t_{L}, q_{L}^{*}\right)
$$

top partwers
before EWSB: $m_{t}=0$ and $m_{q^{*}} \neq 0$ (but smaller than m_{ρ})

$$
\begin{aligned}
& \left\{\begin{array}{c}
\sin \theta_{R} \rightarrow y_{t} / g_{\rho} \\
m_{R} \rightarrow m_{t}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
t_{R} \simeq t_{R}^{e l} \\
M_{T} \rightarrow m_{\rho}
\end{array}\right\} \\
& 3 \text { scales: } m_{\rho}, f, m_{q^{*}}
\end{aligned}
$$

composite t_{R} : equivalent limit

Feasibility 1: Effective Lagrangian

 How does the composite nature of the top modify the low energy theory?$$
m_{\rho} \gg\left(f, m_{q^{*}}\right) \gg E>m_{t}
$$

"Chiral"-lagrangian for the top (low energy lagrangian)
2 rules: x extra composite state, $\frac{H}{f}, \frac{t}{f m_{\rho}^{1 / 2}} \quad$ x extra derivative, $\frac{\partial}{m_{\rho}}$
compo q_{L}

$$
\begin{gathered}
\frac{i c_{L}^{(1)}}{f^{2}} H^{\dagger} D_{\mu} H \bar{q}_{L} \gamma^{\mu} q_{L}+\frac{i c_{L}^{(3)}}{2 f^{2}} H^{\dagger} \sigma^{i} D_{\mu} H \bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L}+h . c .+\frac{c_{4 q}}{f^{2}}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right) . \\
{\operatorname{compo~} t_{R}}_{c_{i}=\mathcal{O}(1) \quad \frac{i c_{R}}{f^{2}} H^{\dagger} D_{\mu} H \bar{t}_{R} \gamma^{\mu} t_{R}+\frac{c_{4 t}}{f^{2}}\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right)\left(\bar{t}_{R} \gamma_{\mu} t_{R}\right)}^{\operatorname{compo} H} \\
\frac{c_{T}}{2 f^{2}}\left|H^{\dagger} D_{\mu} H\right|^{2}+\frac{c_{S}}{m_{\rho}^{2}} H^{\dagger} W_{\mu \nu} B^{\mu \nu} H+\cdots
\end{gathered}
$$

Feasibility 2: EWPT and symmetries

$$
\begin{gathered}
\text { from } \frac{1}{f^{2}} \text {-operators: } \\
\times \widehat{T}=\frac{g^{2}}{m_{W}^{2}}\left[\Pi_{W^{+}}(0)-\Pi_{W^{3}}(0)\right]=c_{T} \frac{v^{2}}{f^{2}} \lesssim 10^{-3} \rightarrow \text { strong bound on f } \\
\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \underset{\langle\Sigma\rangle}{\longrightarrow} \mathrm{SU}(2)_{V} \rightarrow c_{T}=0 \\
T=0 \text { at tree-level } \\
\times \frac{\delta g_{Z b_{L} b_{L}}}{g_{Z b_{L} b_{L}} \simeq\left(c_{L}^{(1)}+c_{L}^{(3)}\right) \frac{v^{2}}{f^{2}} \lesssim 10^{-3} \longrightarrow \text { strong bound on } f} \\
\left.P_{L R} \quad \text { (interchanges } L \longleftrightarrow R\right) \longrightarrow c_{L}^{(3)}=-c_{L}^{(1)} \equiv c_{L} \\
b_{L}=\text { eigenstate } \\
\delta g_{Z b_{L} b_{L}}=0 \text { at tree-level }
\end{gathered}
$$

lucky we have these (accidental?) symmetries!

FeasiGility 3: EWPT and Gonnds

$\times \widehat{S}=g^{2} \Pi_{W_{3 B}}^{\prime}(0)=2 g^{2} c_{S} \frac{v^{2}}{m_{\rho}^{2}} \lesssim 10^{-3} \rightarrow$ bound on m_{ρ}
x if calculable,
(AdS/CFT) $m_{\rho} \gtrsim 2.3 \mathrm{TeV} \underset{g_{\rho}}{\sim 4.6} \underset{\text { Reference }}{\longrightarrow} \underset{\text { ReV }}{\sim}$

Feasibility 4: Custodians

minimal global symmetries of $\operatorname{BSM}: \mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{X}$ assignments for Q, T :
$\boldsymbol{X} b_{L}=$ eigenstate of $P_{L R} \quad T_{L}=T_{R}=1 / 2, \quad T_{L}^{3}=T_{R}^{3}=-1 / 2$
$\times g_{\rho} \bar{Q}_{L} \Sigma T_{R} \equiv\left(\mathbf{2}, R_{q}\right)_{X_{q}}(\mathbf{2}, \mathbf{2})_{\mathbf{0}}\left(\mathbf{1}, R_{t}\right)_{X_{t}}$ invariant
custodians of q_{L}

$$
q_{L}^{*}=\mathbf{2}_{\mathbf{7 / 6}} \Rightarrow Q=\left(+\frac{5}{3},+\frac{2}{3}\right.
$$

Note.- If larger low-energy symmetry, we embed (a) or (b) in some of its representations.

Feasibility 5: 1-loop estimates
Have we finished with EWPT?
NO. Low energy $(E<\Lambda)$ one-loop (leading) estimates:

$$
\begin{gathered}
\widehat{T} \sim \frac{N_{c}}{16 \pi^{2}} c_{L, R}^{2} \frac{v^{2} \Lambda^{2}}{f^{4}} \\
c_{L, R}^{2} \sim\left(\frac{m_{L, R}}{m_{\rho}}\right)^{4}
\end{gathered}
$$

$$
\delta g_{Z b_{L} b_{L}} \sim \frac{N_{c}}{16 \pi^{2}} c_{L} c_{4 q} \frac{v^{2} \Lambda^{2}}{f^{4}}
$$

$$
c_{L} c_{4 q} \sim\left(\frac{m_{L}}{m_{\rho}}\right)^{6}
$$

x generically: $\Lambda \sim m_{\rho} \longrightarrow c_{L}, c_{R}, c_{4 q} \neq 1 \longrightarrow$ nolarge compositeness allowed
x composite limit: $\Lambda \sim m_{q^{*}} \longrightarrow$ large compositeness allowed $m_{q^{*}} \rightarrow 0 \longrightarrow$ custodial symmetry recovered

Feasibility 6a: Composite gl

case (a):
T contour plot

X large composíteness \longleftrightarrow light custodians
X softer bounds for $m_{q^{*}} \sim(500,1000) \mathrm{GeV}$
X bounds from $Z b_{L} b_{L}$ can be hard ($c_{4 q}$ dependence)
case (b): allowed composite q_{L} parameter space very small

Feasibility 6G: Composite $\boldsymbol{t}_{\boldsymbol{R}}$

case (a): no serious bounds on composite t_{R} parameter space
case (b):
T contour plot

X softer bounds for negative c_{R} and $m_{q^{*}} \sim(500,1500) \mathrm{GeV}$
X regions with positive T
X no strong bounds from $Z b_{L} b_{L}$ (no quadratic dependence on m_{q})

Pheno 1: Effective Lagrangian

Model independent analysis of composite top consequences
$\frac{1}{f^{2}}$-operators (Leading):

$$
\frac{i c_{L}^{(1)}}{f^{2}} H^{\dagger} D_{\mu} H \bar{q}_{L} \gamma^{\mu} q_{L}+\frac{i c_{L}^{(3)}}{2 f^{2}} H^{\dagger} \sigma^{i} D_{\mu} H \bar{q}_{L} \gamma^{\mu} \sigma^{i} q_{L}+h . c .+\frac{c_{4 q}}{f^{2}}\left(\bar{q}_{L} \gamma^{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right) .
$$

$c_{i}=\mathcal{O}(1)$

$$
\begin{gathered}
\text { compo tr } \\
\frac{i c_{R}}{f^{2}} H^{\dagger} D_{\mu} H \bar{t}_{R} \gamma^{\mu} t_{R}+\frac{c_{4 t}}{f^{2}}\left(\bar{t}_{R} \gamma^{\mu} t_{R}\right)\left(\bar{t}_{R} \gamma_{\mu} t_{R}\right)
\end{gathered}
$$

in our framework: $c_{L}^{(3)} \simeq-c_{L}^{(1)}$ and $c_{R} \simeq 0$.

$$
\begin{gathered}
t_{R}=\text { eigenstate of parity } \\
\text { sym. protecting } Z t_{R} t_{R}
\end{gathered}
$$

Pheno 2: Anomalous conplings
Modification of couplings top - SM gauge bosons

$$
\begin{aligned}
& \frac{\delta g_{W t_{L} b_{L}}}{g_{W t_{L} b_{L}}}=c_{L} \frac{v^{2}}{f^{2}} \quad \frac{\delta g_{Z t_{L} t_{L}}}{g_{Z t_{L} t_{L}}} \simeq 2 c_{L} \frac{v^{2}}{f^{2}} \quad \frac{\delta g_{Z t_{R} t_{R}}}{g_{Z t_{R} t_{R}}}=\frac{3 c_{R}}{4 \sin ^{2} \theta_{W}} \frac{v^{2}}{f^{2}} \\
& f=500 \mathrm{GeV} \longrightarrow \text { no strong enough present (dírect) contraints }
\end{aligned}
$$

LHC: tops mainly pair produced and $B R(t \rightarrow W b) \sim 1$

Pheno 3: Four-top production

genuine effect!

Pheno 4: Four-top production

2 tops $\left(t_{1}\right)$ very energetic $\left(p_{T}\left(t_{1}\right)>p_{T}\left(t_{2}\right)\right)$
distributions:

cuts (reduce backgrounds) $\longrightarrow 4 t$ contribution dominates
detector analysis?

X possible signal: $l^{ \pm} l^{ \pm} j j \quad$ Lillie, Shu, Tait $\longrightarrow \sigma_{4 t}>45 \mathrm{fb}$
X top reconstruction

Conclusions

The top quark is the most sensitive fermion to the strong sector responsible for EWSB and SM masses.
x can one of the chiralities of the top be fully composite?
Present experimental bounds do not rule out this possibility.
Even we can get positive T contributions (mainly for c negative), needed in these models for agreement with EWPT.

X can one test this possibility at the LHC?
x four-top production enhancement = genuine (difficult but viable)
x anomalous couplings
Also direct searches of top partners (contino, servant) and flavour transitions
extra

T and $Z 6 G$ results

composite q_{L}, case (a):

EFT results: $\quad m_{\rho} \gg m_{q^{*}} \gg m_{t}$

$$
\begin{gathered}
\widehat{T}=\widehat{T}_{t o p}^{S M}\left[c _ { L } ^ { 2 } \xi ^ { 2 } \left(2 \frac{m_{q^{*}}^{2}}{m_{t}^{2}}\right.\right. \\
\\
\delta g_{Z b_{L} b_{L}}=-\delta g_{b_{L}}^{S M} 3 c_{4 q} \xi\left[c_{L} \xi\left(4 \frac{m_{t}^{2}}{m_{q^{*}}^{2}}\right)+c_{L} \xi\left(10+4 \log \frac{m_{t}^{2}}{m_{t}^{2}}\right)+\frac{m_{t}^{2}}{m_{q^{*}}^{2}}\left(\frac{22}{m_{q^{*}}^{2}}+4 \log \frac{m_{t}^{2}}{m_{q^{*}}^{2}}\right)\right]
\end{gathered}
$$

Four-top production

can we distinguish between compo q_{L} or compo t_{R} in 4-top production?

studying angular distributions of decay products $\left(l^{+}\right)$

Flavour constraints
contraints on top compositeness from flavour physics?
$W t_{L} b_{L}$ coupling:

W
contraints at 15\%

Zit couplings:

flavour constraints = indirect (more model dependent) generically = some extra flavor structure is needed

