Flavour in the Littlest Higgs with T-Parity Confronting other New Physics Scenarios

Monika Blanke

MPP Munich & TU Munich

2nd general meeting
Interplay of Collider and Flavour Physics
CERN, Geneva
March 16, 2009

Outline

- Little Higgs Basics
- FCNC Processes in the Littlest Higgs with T-Parity
 - Flavour Structure
 - K and B Physics Observables
 - Comparison with the RS-Custodial Results
- 3 Lepton Flavour Violation
 - Little Higgs Results
 - Comparison with Supersymmetry
- Conclusions

Some Literature

Flavour violation in the quark sector

- ➤ Hubisz, Lee, Paz, hep-ph/0512169
- MB, Buras, Poschenrieder, Tarantino, Uhlig, Weiler, hep-ph/0605214
- MB, Buras, Poschenrieder, Recksiegel, Tarantino, Uhlig, Weiler, Hep-ph/0609284, Hep-ph/0610298
- ➤ MB, Buras, Recksiegel, Tarantino, Uhlig, hep-ph/0703254, 0704.3329
- ➤ MB, Buras, Recksiegel, Tarantino, 0805.4393
- ➤ Goto, Окада, Үамамото, 0809.4753
- ➤ MB, Buras, Duling, Recksiegel, Tarantino, 0903.xxxx

Lepton flavour violation

- CHOUDHURY, CORNELL, DEANDREA, GAUR, GOYAL, HEP-PH/0612327
- ➤ MB, Buras, Duling, Poschenrieder, Tarantino, Hep-ph/0702136
- ➤ DEL AGUILA, ILLANA, JENKINS, 0811.2891
- ➤ MB, Buras, Duling, Recksiegel, Tarantino, 0903.xxxx

The Littlest Higgs Model with T-Parity

Little Higgs idea: Higgs boson as a pseudo-Goldstone boson

- collective symmetry breaking explains smallness of its mass
 - **global SU(5)** broken spontaneously to SO(5) at scale $f \sim 1 \, \text{TeV}$
 - gauged subgroup $[SU(2) \times U(1)]^2 \longrightarrow SU(2)_L \times U(1)_Y$
 - new heavy gauge bosons W_H^{\pm} , Z_H , A_H and heavy scalar triplet Φ
 - top quadratic divergence cancelled by new heavy quark T

T-parity: discrete symmetry, under which new particles are odd

- > analogous to R-parity in SUSY
- no tree level contributions to EW precision observables
- \triangleright lightest T-odd particle (A_H) stable: dark matter candidate (?)

Arkani-Hamed, Cohen, Georgi, hep-th/0104005, hep-ph/0105239 Arkani-Hamed, Cohen, Katz, Nelson, hep-ph/0206021 Cheng, Low, hep-ph/0308199, hep-ph/0405243

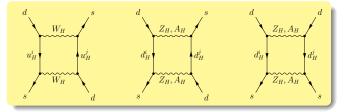
Fermions in the LHT Model

T-even quark sector:

$$\begin{pmatrix} u \\ d \end{pmatrix}_{L} \quad \begin{pmatrix} c \\ s \end{pmatrix}_{L} \quad \begin{pmatrix} t \\ b \end{pmatrix}_{L} \quad u_{R} \quad c_{R} \quad t_{R} \quad T_{+}$$

- \rightarrow standard CKM mixing + mixing of T_+ with t
- T-odd mirror quark sector:

Low, HEP-PH/0409025


$$\begin{pmatrix} u_H \\ d_H \end{pmatrix} \quad \begin{pmatrix} c_H \\ s_H \end{pmatrix} \quad \begin{pmatrix} t_H \\ b_H \end{pmatrix} \quad T_-$$

- new CKM-like mixing matrices V_{Hu}, V_{Hd} parameterising mirror quark interactions with SM quarks
- Lepton sector:

SM leptons + mirror leptons, analogous to quark sector

LHT Flavour Violation

- **T-even sector:** contributions of T_+ (CMFV)
 - ightharpoonup small effects ($\lesssim 20\%$)
- T-odd sector: heavy gauge bosons & mirror fermions

- contribution at the loop level (T-parity)
- \triangleright new sources of flavour and CP-violation (V_{Hd})
- but no new operators (only LH couplings)
- potentially large effects

 Нивіз
z, Lee, Paz, нер-рн/0512169; ВВРТИW, нер-рн/0605214 ВВР
RTUW, нер-рн/0609284

Basic Structure of LHT Decay Amplitudes

$$\mathcal{A}_{\mathsf{LHT}} = \sum_{i} B_{i}^{\mathsf{SM}} \eta_{i}^{\mathsf{QCD}} \left[\lambda_{\mathsf{CKM}}^{i} \underbrace{F_{i}(m_{i}, m_{T_{+}}, \dots)}_{\mathsf{real \& flavour universal loop functions}}^{\mathsf{T-odd sector}} \underbrace{\xi_{\mathsf{V}_{\mathsf{Hd}}}^{\mathsf{i}} G_{i}(m_{H}^{i}, M_{W_{H}})}_{\mathsf{real \& flavour universal loop functions}}^{\mathsf{T-odd sector}} \right]$$

- T-even sector: CMFV
- ightharpoonup T-odd sector: new sources of flavour & CP-violation (ξ_{VIII}^{I}) but **only SM operators** (pure V-A couplings)

specific pattern of flavour violation

recall: RS-Custodial → SEE AJB'S TALK

- new sources of flavour & CP-violation
- new operators
- tree level FCNCs

Naïve Expectations for K and B Physics

BBPRTUW, HEP-PH/0610298

relative size of LHT effects:

$$\propto rac{1}{oldsymbol{\lambda_{ extsf{CKM}}^i}} \xi_{V_{ extsf{Hd}}}^i$$

$$\frac{1}{\lambda_t^{(K)}} \simeq 2500$$

$$\frac{1}{\lambda_t^{(K)}} \simeq 2500$$
 \gg $\frac{1}{\lambda_t^{(g)}} \simeq 100$ $>$ $\frac{1}{\lambda_t^{(g)}} \simeq 25$

$$rac{1}{\lambda_t^{(s)}} \simeq 25$$

- largest effects in K physics observables
- moderate effects in B_{d,s} physics observables
- \succ but may be reversed by specific hierarchies in ξ^i_{Vu}

Logarithmically Enhanced Cutoff-Dependence?

LH without T-parity: *Z* penguin contains left-over singularity

reflects sensitivity to the UV completion

Buras, Poschenrieder, Uhlig, Bardeen, hep-ph/0607189

similar effect also encountered in LHT BBPRTU

BBPRTUW, HEP-PH/0610298

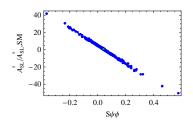
However:

Goto, Okada, Yamamoto, 0809.4753 del Aguila, Illana, Jenkins, 0811.2891

- > additional contribution to Z penguin identified
- singularity exactly cancelled
- > FCNC amplitudes in LHT fully calculable!

 \rightarrow see talk by Y. Okada

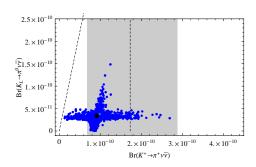
modified predictions for decays mediated by Z penguins (e. g. $K \to \pi \nu \bar{\nu}$, $\mu \to eee$) \nearrow numerical update BBDRT, 0903.xxxx but no impact on $P - \bar{P}$ mixing, $\mu \to e \gamma, \dots$!


CP-Violation in $B_s - \bar{B}_s$ Mixing

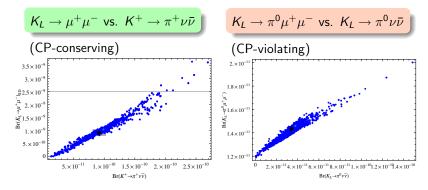
BBPTUW, hep-ph/0605214; BBRT, 0805.4393; BBDRT, 0903.xxxx

generally: LHT effects in B physics expected to be small

but: CP-violation in B_s extremely suppressed in the SM due to $\beta_{\rm S} \simeq -1^{\circ}$


> large LHT effects possible

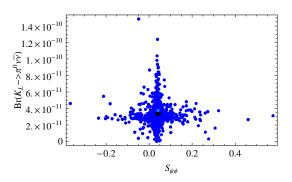
- $S_{\psi\phi}\sim 0.5$ possible
- naturally $S_{\psi\phi} \lesssim 0.2$
- strong correlation with A_{SL}^s Ligeti et al., hep-ph/0604112


The $K \to \pi \nu \bar{\nu}$ System

BBDRT, 0903.xxxx

- factor 2–3 enhancements of $K \to \pi \nu \bar{\nu}$ possible
- strict correlation (two branches of possible points)
 - ightharpoonup equal CP-phases in $K^0 \bar{K}^0$ and $K \to \pi \nu \bar{\nu}$

Correlations between Various Rare K Decays

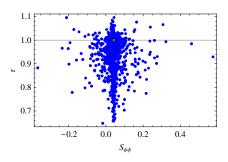

strong linear correlation in both cases

BBDRT, 0903.xxxx

- **V-A structure** of flavour violating coupling $(K_L \to \mu^+ \mu^- \text{ vs. } K^+ \to \pi^+ \nu \bar{\nu})$
- ightharpoonup universality of CP-phases $(K_L \to \pi^0 \mu^+ \mu^- \text{ vs. } K_L \to \pi^0 \nu \bar{\nu})$

K versus B Physics

BBDRT, 0903.xxxx


simultaneous large effects in $S_{\psi\phi}$ and rare K decays unlikely, but not impossible

Violation of a "Golden" CMFV Relation

$$\frac{\textit{Br}(\textit{B}_{\textit{s}} \rightarrow \mu^{+}\mu^{-})}{\textit{Br}(\textit{B}_{\textit{d}} \rightarrow \mu^{+}\mu^{-})} = \frac{\hat{\textit{B}}_{\textit{B}_{\textit{d}}}}{\hat{\textit{B}}_{\textit{B}_{\textit{s}}}} \frac{\tau_{\textit{B}_{\textit{s}}}}{\tau_{\textit{B}_{\textit{d}}}} \frac{\Delta \textit{M}_{\textit{s}}}{\Delta \textit{M}_{\textit{d}}} \, \mathbf{r}$$

Buras, hep-ph/0303060

- $\mathbf{r} \neq \mathbf{1}$ signals
 - new sources of flavour violation or
 - new operators

BBDRT, 0903.xxxx

LHT Pattern of Flavour Violation

LHT	RS-Custodial
large effects in rare K decays	=
moderate effects in B physics	~
exception: ${\sf S}_{\psi\phi}\lesssim {\sf 0.4}$	≠
but not simultaneously with large K effects	=
$K o \pi u ar{ u}$ system: strict correlation	≠
$K_L \to \mu^+ \mu^-$ & $K^+ \to \pi^+ \nu \bar{\nu}$: linear correlation	≠

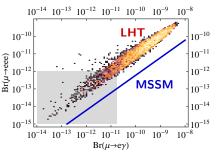
both K and B physics offer powerful tools to distinguish between these two models!

LFV Mediated by Mirror Leptons

• SM (+right-handed Dirac neutrinos): LFV very much suppressed due to smallness of m_{ν}

$$Br(\mu o e\gamma)_{
m SM} \lesssim 10^{-54}$$

- LHT: LFV mediated by mirror leptons, $m_H^{\ell} \sim 500 \, {\rm GeV}$ > large effects can be expected
- experimental bound: (MEGA COLLABORATION)


$$Br(\mu
ightarrow e\gamma)_{\rm exp} < 1.2 \cdot 10^{-11}$$
 (90% C.L.)

will be improved to $\sim 10^{-13}$ by MEG soon

• experimental prospects also for τ decays (LHCB, SUPERB)

$\mu \rightarrow e \gamma$ and $\mu \rightarrow e e e$

BBDRT, 0903.xxxx

- most points exceed experimental bounds :
 - $\sim 10\%$ fine-tuning in mirror lepton parameters required

DEL AGUILA, ILLANA, JENKINS, 0811.2891

- strong correlation between $\mu \to e \gamma$ and $\mu^- \to e^- e^+ e^-$
- dipole contribution fully negligible ≠ MSSM

LHT Upper Bounds on LFV Branching Ratios

after imposing all available constraints:

BBDRT, 0903.xxxx

	f = 1 TeV	f = 0.5 TeV	SuperB
$ au o \ell \gamma$	$8 \cdot 10^{-10}$	$2\cdot 10^{-8}$	$2 \cdot 10^{-9}$
$ au ightarrow \ell \ell \ell$	$1\cdot 10^{-10}$	$2\cdot 10^{-8}$	$2\cdot 10^{-10}$
$ au ightarrow \ell \pi$	$4\cdot 10^{-10}$	$2 \cdot 10^{-8}$?
$ au ightarrow \ell \eta$	$2\cdot 10^{-10}$	$1\cdot 10^{-8}$	$5\cdot 10^{-10}$
$ au ightarrow \ell \eta'$	$1\cdot 10^{-10}$	$1\cdot 10^{-8}$?

for $f \leq 1 \text{ TeV}$: **LHT effects may be observable** at future facilities

Correlations and Comparison with Supersymmetry

MSSM: dipole operator **dominates** decays $\ell_i \to \ell_k \ell_k \ell_k$, $\ell_i \to \ell_j \ell_k \ell_k$

Ellis, Hisano, Raidal, Shimizu, hep-ph/0206110
Brignole, Rossi, hep-ph/0404211
Arganda, Herrero, hep-ph/0510405
Paradisi, hep-ph/0508054, hep-ph/0601100

$$\frac{Br(\mu^- \to e^- e^+ e^-)}{Br(\mu \to e\gamma)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_\mu^2}{m_e^2} - 2.7 \right)$$

$$\frac{Br(\tau^- \to \ell^- e^+ e^-)}{Br(\tau \to \ell\gamma)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_\tau^2}{m_e^2} - 2.7 \right)$$

$$\frac{Br(\tau^- \to \ell^- \mu^+ \mu^-)}{Br(\tau \to \ell\gamma)} \simeq \frac{\alpha}{3\pi} \left(\log \frac{m_\tau^2}{m_\mu^2} - 2.7 \right)$$

LHT: dipole operator **irrelevant**, decays dominated by Z^0 -penguin and box diagrams

BBDPT, HEP-PH/0702136

very different pattern!

Ratios of LFV Branching Ratios

BBDRT, 0903.xxxx

	LHT	MSSM
$\frac{Br(\mu^-{ ightarrow}e^-e^+e^-)}{Br(\mu{ ightarrow}e\gamma)}$	0.02 1	$\sim 6\cdot 10^{-3}$
$\frac{Br(au^-{ ightarrow}e^-e^+e^-)}{Br(au{ ightarrow}e\gamma)}$	0.04 0.4	$\sim 1\cdot 10^{-2}$
$\frac{\mathit{Br}(au^-\!\! o\!\!\mu^-\mu^+\mu^-)}{\mathit{Br}(au\!\! o\!\!\mu\gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}~\red{\ast}$
$\frac{\mathit{Br}(au^-{ ightarrow}e^-\mu^+\mu^-)}{\mathit{Br}(au{ ightarrow}e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}~\red{\ast}$
$\frac{Br(au^- ightarrow\mu^-e^+e^-)}{Br(au ightarrow\mu\gamma)}$	0.04 0.3	$\sim 1\cdot 10^{-2}$

* can be significantly enhanced by Higgs contributions

Paradisi, hep-ph/0508054, hep-ph/0601100

Summary – Grand Picture of LHT Flavour Violation

LHT in K and B physics

- large effects possible in B_s CP-violation and rare K decays
- moderate effects in most B physics observables
- specific correlations allow for distinction from other NP frameworks (CMFV, RS-Custodial, . . .)

LHT and lepton flavour violation

- large effects expected in LFV μ and τ decays
- ratios of branching ratios very different from SUSY
- Flavour physics complementary to collider physics for disentangling the nature of NP