FeynRules

An easy implementation of the NMFV MSSM in Monte Carlo generators.

Benjamin Fuks (IPHC Strasbourg)

In collaboration with C. Duhr (UCL), N. Christensen (MSU) & MadGraph people.

Interplay of Collider and Flavour Physics 2nd general meeting @ CERN March 17, 2009

- Motivation: a roadmap to BSM at the LHC
- 2 FeynRules
- 3 Implementation of the NMFV MSSM
- 4 Summary outlook

- Motivation: a roadmap to BSM at the LHC

A roadmap to BSM at the LHC (1)

Models

Theoretical works

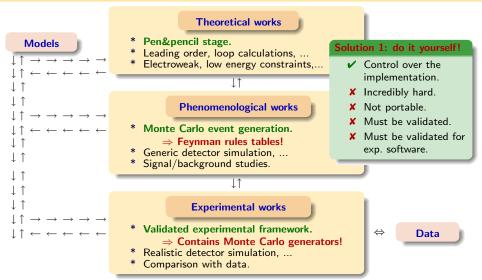
- * Pen&pencil stage.
- * Leading order, loop calculations, ...
- * Electroweak, low energy constraints,...

Phenomenological works

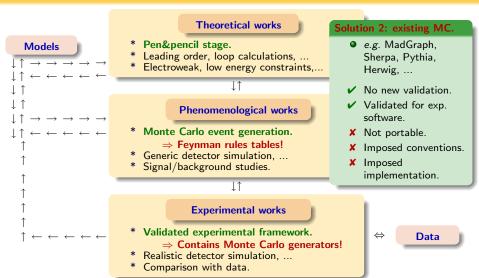
- * Monte Carlo event generation.
- ⇒ Feynman rules tables!
 * Generic detector simulation, ...
- * Signal/background studies.

Experimental works

- * Validated experimental framework.
 - ⇒ Contains Monte Carlo generators!
- * Realistic detector simulation, ...
- Comparison with data.


 \Leftrightarrow

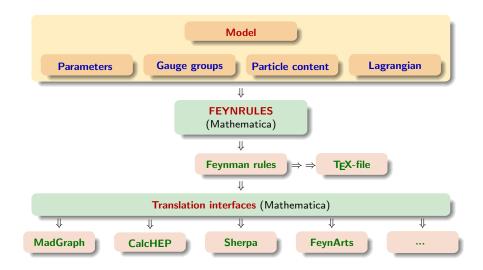
Data


How to go from models to data?

A roadmap to BSM at the LHC (2)

Motivation 0000

A roadmap to BSM at the LHC (3)


A roadmap to BSM at the LHC (4)

Motivation 0000

Theoretical works Solution 3: FeynRules. Pen&pencil stage. Models Communicates with Leading order, loop calculations, ... Ε MadGraph, Sherpa, Electroweak, low energy constraints,... (Pythia, Herwig), ... ✓ No new MC validation. Phenomenological works N MC validated for exp. Monte Carlo event generation. software. R ⇒ Feynman rules tables! Mathematica based. Generic detector simulation, ... Portable. * Signal/background studies. U **Experimental works** E * Validated experimental framework. \Leftrightarrow Data ⇒ Contains Monte Carlo generators! Realistic detector simulation, ... Comparison with data.

- FeynRules

FeynRules

Example: QCD (1)

```
Parameters of the model
aS == {
   Description
                   -> "Strong coupling constant at MZ"
   Tex
                    -> Subscript[\[Alpha],s],
   ParameterType
                   -> External.
   BlockName -> SMINPUTS,
   OrderBlock -> 3.
   InteractionOrder -> {QCD, 2}},
gs == {
                   -> "Strong coupling constant",
   Description
   TeX
                    -> Subscript[g, s],
   ComplexParameter -> False,
   ParameterType -> Internal,
   Value
                   -> Sgrt[4 Pi aS],
   InteractionOrder -> {QCD, 1},
                   -> "G"}
   ParameterName
```

- * All the information needed by the MC codes.
- * **T_EX-form** (for the T_EX-file).
- * Complex/real parameters.
- External/internal parameters.

Example: QCD (2)

Gluon field definition

```
V[1] == {
 ClassName -> G.
 SelfConjugate -> True,
 Indices
               -> Index[Gluon],
 Mass
                -> O.
 Width
                -> O,
 ParticleName -> "g",
 PDG
                -> 21,
 PropagatorLabel -> "G",
 PropagatorType -> C,
 PropagatorArrow -> None}
```

The $SU(3)_C$ gauge group

```
SU3C == {
 Abelian
                 -> False.
 GaugeBoson -> G,
 StructureConstant -> f,
 DTerm
         -> dSUN,
 Representations -> {T, Colour},
 CouplingConstant -> gs}
```

- Gauge boson definition.
- Gauge group definition.
- * Association of a coupling constant.
- Definition of the structure functions.
- * Definition of the representations.

The quark fields

```
F[1] == {
 ClassName -> q,
  ClassMembers
                  -> {d, u, s, c, b, t}.
  FlavorIndex
                  -> Flavour.
  SelfConjugate
                  -> False,
  Indices
                  -> {Index[Flavour], Index[Colour]},
                   -> {MQ, MD, MU, MS, MC, MB, MT},
  Mass
  Width
                  \rightarrow {WQ, 0, 0, 0, 0, 0, WT},
                   -> {"d", "u", "s", "c", "b", "t"},
  ParticleName
  AntiParticleName -> {"d~", "u~", "s~", "c~", "b~", "t~"},
                   \rightarrow {1, 2, 3, 4, 5, 6},
  PDG
  PropagatorLabel -> {"q", "d", "u", "s", "c", "b", "t"},
  PropagatorType
                   -> Straight,
  PropagatorArrow -> Forward}
```

- Classes: implicit sums in the Lagrangian.
- * All the information needed by the MC codes.

Example: QCD(4)

The QCD Lagrangian

$$\mathcal{L}_{\mathrm{QCD}} = -rac{1}{4}G_{\mu
u}^{a}G^{a\mu
u} + \sum_{f}\left[ar{q}_{f}\left(i\partial\!\!\!/ - m_{f} + g_{s}G^{a}T^{a}
ight)q_{f}
ight],$$

where we are summing over the quark flavours.

- * Gluon strength tensor: automatically defined with the gauge group.
- Implicit summations \Rightarrow eavey debugging.

Example: QCD (5)

Results

```
FeynmanRules[LQCD, FlavorExpand->False]
```

```
Vertex 1
Particle 1 : Vector , G
Particle 2 : Dirac , q†
Particle 3 : Dirac , q
Vertex: i g_{S} \gamma_{S>,S_{3}}^{\mu_{1}} \delta_{f_{2},f_{3}} T_{m_{2},m_{3}}^{a}
```

Explicit flavour expansion: six vertices instead of one.

Let us do phenomenology!

```
WriteFeynArtsOutput[LQCD]
WriteCHOutput[LQCD]
WriteMGOutput[LQCD]
WriteSHOutput[LQCD]
```

- Motivation: a roadmap to BSM at the LHC
- 2 FeynRules
- 3 Implementation of the NMFV MSSM
- 4 Summary outlook

Model description

- General version of the MSSM
 - * All possible mixings in the scalar sector.
 - \Rightarrow 6 \times 6 flavour violating mass matrices.
 - * All possible complex phases.
 - * 105 additional free parameters.
 - ⇒ SLHA2-like format: the SLHA-FR format.
 - \Rightarrow C++ translator SLHA1/2 \Leftrightarrow SLHA-FR.
- Lagrangian as easy as possible.
 - Partially written in the interaction basis.
 - * Partially written in the mass basis.
- Handmade vs. automated implementation.
 - * 2522 vertices, without the four-scalar interactions.
 - * More that 10000 vertices, with the four-scalar interactions !!!

Validation status

FeynArts/FormCalc:

- Check of the FC-produced formulas with litterature.
- \checkmark FormCalc-5.4: all 2 → 2 SUSY particle pair hadroproduction processes.
- ✓ FormCalc-6.0: in the cMSSM
- FormCalc-6.0: problematic issue with the general MSSM.
- ✓ MadGraph/MadEvent (in the cMSSM):
 - * Comparison between **stock** and **FeynRules** versions of the model.
 - * MG-Stock was validated by the CATPISS collaboration [Hagiwara et al. (2006)].
 - ✓ 320 decay widths.
 - ✓ 456 $2 \rightarrow 2$ SUSY processes.
 - ✓ 2708 $2 \rightarrow 3$ SUSY processes.
 - * The sign and absolute value of any vertex have been checked.
- CalcHEP/CompHEP (in the cMSSM): 112 2 → 2 processes.
 - * Comparison between **stock** and **FeynRules** versions of the model.
 - * Feynman gauge and unitary gauge.

Example of results

Some MadGraph and CalcHEP results

Process	MG-FR	MG-stock	CH-FR	CH-stock	Result
e+,e->e+,e-	7.5203×10^{2}	7.5216×10^{2}	7.5137×10^{2}	7.5137×10^{2}	OK: 0.105086%
e+,e->vm,vm~	1.5268×10^{-3}	1.5285×10^{-3}	1.5261×10^{-3}	1.5262×10^{-3}	OK: 0.15714%
e+,e->t,t~	1.1098×10^{-2}	1.1101×10^{-2}	1.1108×10^{-2}	1.1114×10^{-2}	OK: 0.144066%
e+,e->d,d~	5.6391×10^{-3}	5.6597×10^{-3}	5.6465×10^{-3}	5.6465×10^{-3}	OK: 0.36464%
e+,e->W+,W-	2.8014×10^{-1}	2.801×10^{-1}	2.8008×10^{-1}	2.8009×10^{-1}	OK: 0.02142029
e+,e->Z,Z	1.535×10^{-2}	1.5347×10^{-2}	1.5347×10^{-2}	1.5347×10^{-2}	OK: 0.01954599
e+,e->Z,a	6.2902×10^{-2}	6.2901×10^{-2}	6.292×10^{-2}	6.292×10^{-2}	OK: 0.03020169
e+,e->s15-,s15+	3.2044×10^{-2}	3.2002×10^{-2}	3.2039×10^{-2}	3.2039×10^{-2}	OK: 0.131156%
e+,e->s12-,s12+	3.6401×10^{-2}	3.641×10^{-2}	3.64×10^{-2}	3.64×10^{-2}	OK: 0.0274688
e+,e->s15-,s12+	2.0292×10^{-3}	2.0269×10^{-3}	2.0291×10^{-3}	2.0291×10^{-3}	OK: 0.113409%
e+,e->sl1-,sl1+	1.6061×10^{-3}	1.6061×10^{-3}	1.6054×10^{-3}	1.6054×10^{-3}	OK: 0.0435933
e+,e->sv3,sv3~	9.5578×10^{-2}	9.5567×10^{-2}	9.554×10^{-2}	9.5542×10^{-2}	OK: 0.039766%
e+,e->su4,su4~	2.9679×10^{-3}	2.9676×10^{-3}	2.9692×10^{-3}	2.9692×10^{-3}	OK: 0.05390119
e+,e->su1,su1~	1.9518×10^{-3}	1.9486×10^{-3}	1.9517×10^{-3}	1.9517×10^{-3}	OK: 0.164086%
e+,e->su6,su6~	2.2021×10^{-3}	2.2041×10^{-3}	2.202×10^{-3}	2.202×10^{-3}	OK: 0.09532245
e+,e->su1,su6~	4.4196×10^{-4}	4.4134×10^{-4}	4.4155×10^{-4}	4.4155×10^{-4}	OK: 0.140383%
e+,e->sd4,sd4~	4.9197×10^{-4}	4.926×10^{-4}	4.9192×10^{-4}	4.9192×10^{-4}	OK: 0.138138%
e+,e->sd6,sd6~	2.0014×10^{-3}	2.0012×10^{-3}	2.0016×10^{-3}	2.0016×10^{-3}	OK: 0.019986%
e+,e->sd1,sd2~	2.1502×10^{-4}	2.149×10^{-4}	2.1494×10^{-4}	2.1494×10^{-4}	OK: 0.05582439
e+,e->n1,n1	7.6112×10^{-3}	7.6075×10^{-3}	7.6077×10^{-3}	7.6076×10^{-3}	OK: 0.0486244
e+,e->n1,n2	2.7949×10^{-3}	2.792×10^{-3}	2.7942×10^{-3}	2.7943×10^{-3}	OK: 0.103814%
e+,e->n2,n3	4.1779×10^{-4}	4.1709×10^{-4}	4.17×10^{-4}	4.1701×10^{-4}	OK: 0.189269%
e+,e->n2,n4	7.5931×10^{-4}	7.5959×10^{-4}	7.5912×10^{-4}	7.5914×10^{-4}	OK: 0.0618946
e+,e->n4,n4	3.5319×10^{-5}	3.531×10^{-5}	3.5317×10^{-5}	3.5317×10^{-5}	OK: 0.0254853
e+,e->x1+,x1-	1.204×10^{-2}	1.2038×10^{-2}	1.2039×10^{-2}	1.2039×10^{-2}	OK: 0.0166127
e+,e->x2+,x2-	7.0411×10^{-3}	7.0479×10^{-3}	7.0494×10^{-3}	7.0494×10^{-3}	OK: 0.11781%
e+,e->Z,h1	7.6379×10^{-4}	7.6496×10^{-4}	7.6477×10^{-4}	7.6478×10^{-4}	OK: 0.153066%
e+,e->z,h2	1.0024×10^{-7}	1.0007×10^{-7}	1.0017×10^{-7}	1.0017×10^{-7}	OK: 0.169737%
e+,e->h3,h1	9.9472×10^{-8}	9.9485×10^{-8}	9.9461×10^{-8}	9.9466×10^{-8}	OK: 0.0241272
e+,e->h3,h2	7.172×10^{-4}	7.1771×10^{-4}	7.177×10^{-4}	7.1771×10^{-4}	OK: 0.0710846
e+,e->H+,H-	1.7338×10^{-3}	1.7338×10^{-3}	1.7355×10^{-3}	1.7355×10^{-3}	OK: 0.0980025

- Motivation: a roadmap to BSM at the LHC
- 2 FeynRules
- 3 Implementation of the NMFV MSSM
- 4 Summary outlook

Summary - Outlook

FeynRules.

- Mathematica package computing Feynman rules from a Lagrangian.
- * Generic output.
- * Generating model file feeding some as many MC codes as possible. [contact us to add your favourite MC tool].
- * The model library is getting bigger and bigger. [contact us to add your favourite model].
- * The validation of the existing models is ongoing.

Summary: the philosophy of FeynRules

- Theorist-friendly environment to develop new models: Mathematica-based
 - Filling the gap between model building and collider phenomenology.
 - 1) Lagrangian \rightarrow FeynRules \rightarrow model file for your Monte Carlo code.
 - 2) Monte Carlo code → phenomenology.
- * Avoid separate implementations of a model on different programs. FeynRules does it for you!
- * Exploit the strengths of the different programs!