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Why the top?
LEP most fermions = point–like particles

BSM sector responsible for EWSB + masses:

Weak coupling: fundamental Higgs + SUSY (naturalness),X

top is not special

X Strong coupling: Technicolor or Composite Higgs,

x Top quark the most sensitive fermion to the BSM sector.

x Top quark has properties of composite state.

BSM physics (operators) couples to 
fermions proportionalty to mass

(SM = without the Higgs)

not for the top

Why?
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Frame 1: BSM sector
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global symmetry residual
global symmetry

3 Nambu-Goldstone bosons
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Model independent analysis: strong sector characterized by
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= mass of lightest bosonic resonances

= coupling between resonances,also,

= global symmetry breaking scale (decay constant)
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1 A

[T a, T b] = ifabcT c (1)

∂µ → Dµ = ∂µ − igT aW a
µ (2)
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µ = Ψ̄γµT

aΨ (3)

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (4)

Ψ = (QL(3, 2)1/6, LL(1, 2)−1/2, (uR)c(3̄, 1)−2/3, (dR)c(3̄, 1)1/3, (eR)c(1, 1)1) (5)
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= mass of lightest fermionic resonances
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inspired by holography – Warped Extra-D
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pT (t1) > pT (t2)
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Frame 2: Partial Compositeness
SM fermions get their masses by mixing with resonances

Q, T = BSM resonances

Pq, Pt

ML,R = yL,Rf cot θL,R

{
sin θL → 1
yL → gρ

} {
sin θR → 1
yR → gρ

}

{
sin θR → yt/gρ

yR → yt

} {
sin θL → yt/gρ

yL → yt

}

mq∗ ≡ ML → 0

MR → mρ

mq∗ ≡ MR → 0

ML → mρ

(1 − Pq)[QL]
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qL
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yt = sin θLgρ sin θR

(
qL
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)
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ML
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, tan θR =

yRf
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top Yukawa:

perturbative picture:
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yt ∼ gρ

mLmR

MQMT

qL = cos θL qel

L + sin θL Qq
L , tan θL =
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non–perturbative picture:
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massless states:

x

x

diagonalization



composite qL:

Frame 3: Composite limit1 A
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if QL in higher representation (of global symmetry of strong sector):
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top partners

composite tR: equivalent limit

before EWSB:

1 A

qL ∈ QL = (tL, q∗L)

mt = 0

mq∗ "= 0

1

and
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qL ∈ QL = (tL, q∗L)

mt = 0
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(but smaller than         )

1 A
{
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}
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}

(1)

{

tR " telR
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3 scales:

1 A

gρQ̄LΣTR ≡ (2, Rq)Xq(2, 2)0(1, Rt)Xt

T̂total = T̂ SM
top

[
c2
1ξ

2

(
2

1

εt

+ 7 + 6 log εt

)
+ c1ξ (10 + 4 log εt) + εt

(
22

3
+ 4 log εt

)]

cqyb

f 2
H†Hq̄LHbR + h.c. +

cqyt

f 2
H†Hq̄LH̃tR + h.c. +

ic
(1)
L

f 2
H†DµHq̄LγµqL +

+
ic

(3)
L

2f 2
H†σiDµHq̄LγµσiqL + h.c. +

c4q

f 2
(q̄LγµqL)(q̄LγµqL)

ctyt

f 2
H†Hq̄LH̃tR + h.c. +

icR

f 2
H†DµHt̄RγµtR +

c4t

f 2
(t̄RγµtR)(t̄RγµtR)

cR

c
(1)
L = c

(3)
L

∆gZtRtR =
cRξ

4 cos θW

∆gWtLbL
= c

(3)
L ξ, ∆gZtLtL = (c(1)

L − c
(3)
L )ξ

c4q, c4t

S > 5

pp → tt̄tt̄

pp → tt̄bb̄

A(tt̄ → tt̄) ∼ c4q,4t

s

f 2
, (1)

gρ = gKK

mρ = mKK

mρ, f, mq∗

1

extrema of partial compositeness
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gρ
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M " mρ
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“Chiral”–lagrangian for the top (low energy lagrangian)

Feasibility 1: Effective Lagrangian
How does the composite nature of the top modify the low energy theory?

compo qL

It is important to notice that the mass of the custodians is given by MQ = yLf cot θL that in the

composite limit tends to zero. Therefore in this limit the custodian states become lighter than

the other resonances, MQ ! Mρ. This effect has also been observed in 5D models in the limit in

which the 5D masses take negative values and the massless states become localized towards the

IR-boundary [10]. Nevertheless, it is hard to understand what could be the origin of this new mass

scale MQ !Mρ in a generic strongly-coupled theory. The effect of having light custodians will have

important phenomenological consequences as we will see later.

Similarly, in the right-handed top composite limit, Eq. (9), one finds that the custodians, given

by (1− Pt)[TR] ≡ P̃t[TR], are also light MT !Mρ.

From now on we will generically denote by q∗ the custodians and by Mq∗ their masses.

3 Low-energy effective lagrangian for a composite top

At energies below the resonance masses, the effective theory corresponds to the SM plus higher-

dimensional operators. These operators are induced by integrating out the heavy resonances at Mρ

and the custodians at Mq∗ . In the first case, the higher-dimensional operators are suppressed by

Mρ. Among these operators, we will be interested in those carrying extra powers of gρ such that the

effective scale that suppresses these operators is in fact gρ/Mρ = 1/f , that in the limit considered

here gρ > 1, is larger than 1/Mρ. These are operators with extra composite tops or Higgs fields (or,

in Higgsless theories, the Goldstones) which couple to the BSM resonances with a coupling of order

gρ. Let us present the list of these operators for the case of a composite qL, Eq. (8). Up to order

p2/f2, we have three dimension-6 operators of this type [5]

ic(1)
L

f 2
H†DµHq̄LγµqL +

ic(3)
L

2f 2
H†σiDµHq̄LγµσiqL + h.c. +

c4q

f 2
(q̄LγµqL)(q̄LγµqL) . (11)

We are using the two-component notation H for the Higgs multiplet:

Σ = (H̃ , H) where H†H = v2 , (12)

and H̃ = iσ2H. Notice that we are only including in H the Goldstones and not the Higgs particle.

The effects of a composite Higgs were already studied in Ref. [5]. In the case where v = f , we cannot

expand in H/f , and we have, at the same leading order as the first two operators of Eq. (11), a

dimension-8 operator
ic′L
f 4

H†DµH(q̄LH)γµ(H†qL) . (13)

The second class of operators that we will be interested in are those induced by integrating out the

custodians. These operators are suppressed by Mq∗ . Since the qL’s custodial partners do not mix

5

with qL (they have different quantum numbers), operators induced at tree-level cannot contain qL.

The custodians of qL, however, can mix with tR through the Yukawa coupling generating higher-

dimensional operators involving tR and H and carrying powers of y2
t /M

2
q∗ . The leading operator of

this kind is given by
ic̃Ry2

t

M2
q∗

H†DµHt̄RγµtR . (14)

At this point it is worth emphasizing the crucial difference between the two classes of operators,

Eq. (11) and Eq. (14). The origin of the operator in Eq. (14) is the mixing of tR with the custodians.

Therefore the strength of this operator is related to the lightness of these extra states. On the other

hand, the strength of the operators in Eq. (11) measures the degree of compositeness of the top

that do not have to be related to new light degrees of freedom.

We can repeat the same analysis for the case of a composite tR. Up to order p2/f2, we have two

operators [5]
icR

f 2
H†DµHt̄RγµtR +

c4t

f 2
(t̄RγµtR)(t̄RγµtR) , (15)

while at order p2/M2
q∗ we have (from integrating out the custodians of tR)

ic̃(1)
L y2

t

M2
q∗

H†DµHq̄LγµqL +
ic̃(3)

L y2
t

2M2
q∗

H†σiDµHq̄LγµσiqL + h.c. . (16)

The coefficients ci are O(1) constants whose values depend on the details of the BSM sector.

In certain cases, as we will see, these coefficients fulfill certain relations due to the underlying

symmetries of the BSM. For a composite Higgs model the values of cR,L are given in Ref. [7]. In

these models the four-fermion interactions arise from integrating out heavy vector resonances. From

a color resonance, assuming a coupling gρ to the top, one has

c4t = c4q = −1

6
, (17)

while for a singlet resonance one gets c4t = c4q = −1/2.

4 Present experimental constraints

In this section we want to study how much the present experimental data limits the compositeness of

the top. Although important effects of the top compositeness could be revealed in flavor physics, we

will not discuss them here (see, however, Ref. [5]). These effects strongly depend on the underlying

theory of flavor, and therefore are very model dependent. Discarding flavor physics, the most

stringent bound on the composite qL case comes from ZbLb̄L that has been measured at LEP at

6

compo tR

2 rules: extra composite state,x x extra derivative,

1 A

(H, t)

f

∂

mρ

1

f 2

ci = O(1)

cT

2f 2
|H†DµH|2 +

cS

m2
ρ

H†WµνB
µνH

1

1 A

(H, t)

f

∂

mρ

1

f 2

ci = O(1)

cT

2f 2
|H†DµH|2 +

cS

m2
ρ

H†WµνB
µνH

1

–operators (leading):

1 A

(H, t)

f

∂

mρ

1

f 2

ci = O(1)

cT

2f 2
|H†DµH|2 +

cS

m2
ρ

H†WµνB
µνH
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compo H

1 A

(H, t)

f

∂

mρ

1

f 2

ci = O(1)

cT

2f 2
|H†DµH|2 +

cS

m2
ρ

H†WµνB
µνH + · · ·
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1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
Nc

16π2
c2

L,R

v2Λ2

f 4

δgbL
∼

Nc

16π2
cLc4q

v2Λ2

f 4

c2

L,R ∼

(
yL,R

gρ

)4

cLc4q ∼

(
yL

gρ

)6

cL, cR, c4q #= 1

q∗L = 27/6 ⇒ Q = +
5

3
, +

2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3

1

1 A

H

f
,

t

fm
1/2

ρ

1



Feasibility 2: EWPT and symmetries
1 A

T̂ =
g2

m2
W

[ΠW+(0) − ΠW 3(0)] = cT

v2

f 2
! 10−3

δgZbLbL

gZbLbL

"

(
c
(1)
L + c

(3)
L

) v2

f 2
! 10−3

Ŝ = g2Π′

W3B
(0) = 2g2cS

v2

m2
ρ

! 10−3

cT = 0

δgZbLbL
= 0

1

〈Σ〉

SU(2)L ⊗ SU(2)R

SU(2)V

PLR

mρ ! 2.3 TeV

f ! 500 GeV

f " 1/4

gρ ∼ 4.6

∆T̂ ∼ 3 × 10−3

T̂ = αT

Ŝ =
α

4s2
W

S

2

X

 at tree–level
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(
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H = SU(2)L ⊗ SU(2)R ⊗ PLR ⊗ U(1)X

E > ΛIR
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gρ =
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gZbLbL

"

(
c
(1)
L + c

(3)
L

) v2

f 2
! 10−3

Ŝ = g2Π′

W3B
(0) = 2g2cS

v2

m2
ρ

! 10−3

cT = 0

δgZbLbL
= 0

1

1 A

T̂ =
g2

m2
W

[ΠW+(0) − ΠW 3(0)] = cT

v2

f 2
! 10−3

δgZbLbL

gZbLbL

"

(
c
(1)
L + c

(3)
L

) v2

f 2
! 10−3

Ŝ = g2Π′

W3B
(0) = 2g2cS

v2

m2
ρ

! 10−3

cT = 0

δgZbLbL
= 0

1
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f " 1/4

gρ ∼ 4.6

∆T̂ ∼ 3 × 10−3

T̂ = αT

Ŝ =
α

4s2
W

S

2

at tree–level

1 A

T̂ =
g2

m2
W

[ΠW+(0) − ΠW 3(0)] = cT

v2

f 2
! 10−3

δgZbLbL

gZbLbL

"

(
c
(1)
L + c

(3)
L

) v2

f 2
! 10−3

Ŝ = g2Π′

W3B
(0) = 2g2cS

v2

m2
ρ

! 10−3

cT = 0

δgZbLbL
= 0

1

X

〈Σ〉

SU(2)L ⊗ SU(2)R

SU(2)V

PLR

mρ ! 2.3 TeV

f ! 500 GeV

f " 1/4

gρ ∼ 4.6

∆T̂ ∼ 3 × 10−3

T̂ = αT

Ŝ =
α

4s2
W

S

2

〈Σ〉

SU(2)L ⊗ SU(2)R

SU(2)V

PLR

mρ ! 2.3 TeV

f ! 500 GeV (ξ " 1/4)

ξ " 1/4

gρ ∼ 4.6

∆T̂ ∼ 3 × 10−3

T̂ = αT

Ŝ =
α

4s2
W

S

2

( interchanges L        R )

1 A

εt =
m2

t

m2
q∗

! 1

mρ " mq∗ " mt

mq∗ ∼ mρ

√
1 −

c

α

δgZbLbL
= −δgSM

bL
3c4qξ

[
cLξ

(
4

εt

log
m2

ρ

m2
q∗

+ 4 log εt

)
+ 2 log εt

]

ξ = ξR =
1

4

T̂ = T̂ SM
top

[
c′ 2R ξ2

(
1

εt

+ 4 −
2

εt

log
m2

ρ

m2
q∗

)
− 8c′Rξ − εt

(
19

3
+ 2 log εt

)]

δgZbLbL
= 0

cR = 0

c
(3)
L = −c

(1)
L ≡ cL

1

bL = eigenstate

1 A

(H, t)

f

∂

mρ

1

f 2

ci = O(1)

cT

2f 2
|H†DµH|2 +

cS

m2
ρ

H†WµνB
µνH

1

from       – operators:

lucky we have these (accidental ?) symmetries !

strong bound on f

strong bound on f



Feasibility 3: EWPT and bounds
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α

4s2
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if calculable,x

1 A

T̂ =
g2

m2
W

[ΠW+(0) − ΠW 3(0)] = cT

v2

f 2
! 10−3

δgZbLbL

gZbLbL

"

(
c
(1)
L + c

(3)
L

) v2

f 2
! 10−3

Ŝ = g2Π′

W3B
(0) = 2g2cS

v2

m2
ρ

! 10−3

cT = 0

δgZbLbL
= 0

1

X bound on

|δgb/gb| ! 5 × 10
−3

gρ

mρ

gSM

yf
L,R

mρ = gρf

v ! f

4πf

ξ =
v2

f 2
! 1

f =
mρ

gρ

G → H

M " mρ

m = 0

3
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Feasibility 4: Custodians

1 A

gρQ̄LΣTR ≡ (2, Rq)Xq(2, 2)0(1, Rt)Xt

T̂total = T̂ SM
top

[
c2
1ξ

2

(
2

1

εt

+ 7 + 6 log εt

)
+ c1ξ (10 + 4 log εt) + εt

(
22

3
+ 4 log εt

)]

cqyb

f 2
H†Hq̄LHbR + h.c. +

cqyt

f 2
H†Hq̄LH̃tR + h.c. +

ic
(1)
L

f 2
H†DµHq̄LγµqL +

+
ic

(3)
L

2f 2
H†σiDµHq̄LγµσiqL + h.c. +

c4q

f 2
(q̄LγµqL)(q̄LγµqL)

ctyt

f 2
H†Hq̄LH̃tR + h.c. +

icR

f 2
H†DµHt̄RγµtR +

c4t

f 2
(t̄RγµtR)(t̄RγµtR)

cR

c
(1)
L , c

(3)
L

∆gZtRtR =
cRξ

4 cos θW

∆gWtLbL
= c

(3)
L ξ, ∆gZtLtL = (c(1)

L − c
(3)
L )ξ

1

assignments for Q, T :

1 A
(

qL

Pq[QL]

)

→

(

cos θL − sin θL

sin θL cos θL

) (

qL

Pq[QL]

)

, tan θL =
yLf

ML
(

tR
Pt[TR]

)

→

(

cos θR − sin θR

sin θR cos θR

) (

tR
Pt[TR]

)

, tan θR =
yRf

MR

Pq[QL]b

TL = TR = 1/2, T 3

L = T 3

R = −1/2

embedding Q T

(a) (2, 2)2/3 (1, 1)2/3

(b) (2, 2)2/3 (1, 3)2/3 ⊕ (3, 1)2/3

gρQ̄LΣTR ≡ (2, Rq)Xq
(2, 2)0(1, Rt)Xt

SU(2)L ⊗ SU(2)R ⊗ U(1)X

Q = T 3

L + T 3

R + X

1

1 A
(

qL

Pq[QL]

)

→

(

cos θL − sin θL

sin θL cos θL

) (

qL

Pq[QL]

)

, tan θL =
yLf

ML
(

tR
Pt[TR]

)

→

(

cos θR − sin θR

sin θR cos θR

) (

tR
Pt[TR]

)

, tan θR =
yRf

MR

Pq[QL]b

TL = TR = 1/2, T 3

L = T 3

R = −1/2

embedding Q T

(a) (2, 2)2/3 (1, 1)2/3

(b) (2, 2)2/3 (1, 3)2/3 ⊕ (3, 1)2/3

gρQ̄LΣTR ≡ (2, Rq)Xq
(2, 2)0(1, Rt)Xt

SU(2)L ⊗ SU(2)R ⊗ U(1)X

Q = T 3

L + T 3

R + X

1

Note.- If larger low–energy symmetry, we embed (a) or (b) in some of its representations.

X

X

the per mille level. This bound has strongly disfavored in the past Technicolor models and other

variants [11]. From the lagrangian of Eq. (11), we find a deviation from the SM ZbLb̄L coupling

given by
δgbL

gbL

=
(c(1)

L + c(3)
L )ξ

1− 2
3 sin2 θW

. (18)

For c(1),(3)
L ∼ 1, as expected for a composite qL, Eq. (18) gives a large deviation, excluded by the

present LEP data. This strong bound, however, can be evaded in certain custodial BSM models. As

pointed out in Ref. [7], the custodial symmetry implemented with PLR (that interchanges L ↔ R)

can protect Zbb̄ from large deviations from its SM value. This occurs when the BSM field that

couples to bL has the following isospin-left and isospin-right charge assignments [7]:

TL = TR = 1/2 , T 3
L = T 3

R = −1/2 . (19)

In this case one finds, from integrating out the BSM sector, c(1)
L = −c(3)

L , and therefore no contribu-

tions to Eq. (18) are generated. The only effect on Zbb̄ will arise from loops involving SM particles

(together with BSM states) that do not respect the custodial and PLR symmetry. We will comment

on these effects later on.

Assuming that Eq. (19) is fulfilled, and that the operator Q̄LΣTR must be allowed to give masses

to the SM fermions, we are left with only two possible charge assignments for the states Q and T

under SU(2)L×SU(2)R×U(1)X
2:

Q T
Case (a) (2,2)2/3 (1,1)2/3

Case (b) (2,2)2/3 (1,3)2/3 + (3,1)2/3

(20)

In this article we will concentrate only on these two possibilities.

4.1 The T̂ parameter

With Zbb̄ under control at tree-level, the next important observable is the T -parameter. The

contribution to T arises from the higher-dimensional operator

cT

2f 2
|H†DµH|2 , T̂ = cT ξ , (21)

where we follow the notation of Ref. [12] in which the T -parameter is rescaled: T̂ = αT % T/129.

As we previously said, T̂ is zero at the tree-level by the custodial symmetry. Nevertheless, it can

2The extra global U(1)X symmetry of the BSM sector is needed to properly embed the hypercharge of the SM,
Y = T 3

R + X.

7

invariant

minimal global symmetries of BSM:

bL = eigenstate of PLR

custodians of qL

1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
Nc

16π2
c2

L,R

v2Λ2

f 4

δgZbLbL
∼

Nc

16π2
cLc4q

v2Λ2

f 4

c2

L,R ∼

(
yL,R

gρ

)4

cLc4q ∼

(
yL

gρ

)6

cL, cR, c4q #= 1

q∗L = 27/6 ⇒ Q = +
5

3
, +

2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3

1

1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
Nc

16π2
c2

L,R

v2Λ2

f 4

δgZbLbL
∼

Nc

16π2
cLc4q

v2Λ2

f 4

c2

L,R ∼

(
yL,R

gρ

)4

cLc4q ∼

(
yL

gρ

)6

cL, cR, c4q #= 1

q∗L = 27/6 ⇒ Q = +
5

3
, +

2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3

1

custodians of tR

Pq, Pt

ML,R = yL,Rf cot θL,R

{
sin θL → 1
yL → gρ

} {
sin θR → 1
yR → gρ

}

{
sin θR → yt/gρ

yR → yt

} {
sin θL → yt/gρ

yL → yt

}

mq∗ ≡ ML → 0

MR → mρ

mq∗ ≡ MR → 0

ML → mρ

(1 − Pq)[QL]

(1 − Pt)[TR]

qL

tR

yt = sin θLgρ sin θR

(
qL

Pq[QL]

)
→

(
cos θL − sin θL

sin θL cos θL

) (
qL

Pq[QL]

)
, tan θL =

yLf

ML
(

tR
Pt[TR]

)
→

(
cos θR − sin θR

sin θR cos θR

) (
tR

Pt[TR]

)
, tan θR =

yRf

MR

Pq[QL]b

TL = TR = 1/2, T 3

L = T 3

R = −1/2

3



Feasibility 5: 1-loop estimates

NO. Low energy (            ) one–loop (leading) estimates:

no large compositeness
 allowed

generically:

1 A
(

qL

Pq[QL]

)
→

(
cos θL − sin θL

sin θL cos θL

) (
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Pq[QL]

)
, tan θL =

yLf

ML(
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)
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) (
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Pt[TR]

)
, tan θR =

yRf
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Pq[QL]b
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embedding Q T

(a) (2, 2)2/3 (1, 1)2/3

(b) (2, 2)2/3 (1, 3)2/3 ⊕ (3, 1)2/3

gρQ̄LΣTR ≡ (2, Rq)Xq
(2, 2)0(1, Rt)Xt

SU(2)L ⊗ SU(2)R ⊗ U(1)X

Q = T 3

L + T 3

R + X

T̂ ∼
NCy4

L,R

16π2f 2
Λ2

Λ ∼ mρ

Λ ∼ mq∗

yL,R '= gρ

mq∗ ! mρ

mq∗ → 0

mρ

mq∗

mt

mρ ( mq∗ ( mt

1

custodial symmetry recovered

x

x

1 A
(

qL

Pq[QL]

)
→

(
cos θL − sin θL

sin θL cos θL

) (
qL

Pq[QL]

)
, tan θL =

yLf

ML(
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)
→

(
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sin θR cos θR

) (
tR

Pt[TR]

)
, tan θR =

yRf

MR

Pq[QL]b
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embedding Q T

(a) (2, 2)2/3 (1, 1)2/3

(b) (2, 2)2/3 (1, 3)2/3 ⊕ (3, 1)2/3

gρQ̄LΣTR ≡ (2, Rq)Xq
(2, 2)0(1, Rt)Xt

SU(2)L ⊗ SU(2)R ⊗ U(1)X

Q = T 3

L + T 3

R + X

T̂ ∼
NCy4

L,R

16π2f 2
Λ2

Λ ∼ mρ

Λ ∼ mq∗

yL,R '= gρ

mq∗ ! mρ

mq∗ → 0

mρ
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mρ ( mq∗ ( mt

1

composite limit:

1 A
(

qL

Pq[QL]

)
→

(
cos θL − sin θL

sin θL cos θL

) (
qL

Pq[QL]

)
, tan θL =

yLf

ML(
tR

Pt[TR]

)
→

(
cos θR − sin θR

sin θR cos θR

) (
tR
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)
, tan θR =

yRf
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embedding Q T

(a) (2, 2)2/3 (1, 1)2/3
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gρQ̄LΣTR ≡ (2, Rq)Xq
(2, 2)0(1, Rt)Xt

SU(2)L ⊗ SU(2)R ⊗ U(1)X

Q = T 3

L + T 3

R + X

T̂ ∼
NCy4

L,R

16π2f 2
Λ2

Λ ∼ mρ

Λ ∼ mq∗

yL,R '= gρ

mq∗ ! mρ
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mρ
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mρ ( mq∗ ( mt
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large compositeness allowed

1 A

|δgbL
/gbL

| ! 5 × 10−3

U(1)L ⊗ U(1)R ⊗ PLR

U(1)V ⊗ PLR

[T a, T b] = ifabcT c (1)

∂µ → Dµ = ∂µ − igT aW a
µ (2)

E < Λ

Mρ > E > Mq∗

1

Have we finished with EWPT?
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1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
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f 4
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∼
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cLc4q
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f 4
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L,R ∼

(
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gρ

)4
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gρ

)6
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q∗L = 27/6 ⇒ Q = +
5

3
, +

2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3

1

1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
Nc

16π2
c2

L,R

v2Λ2

f 4

δgZbLbL
∼

Nc

16π2
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f 4
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(
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)4

cLc4q ∼

(
yL
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)6

cL, cR, c4q #= 1

q∗L = 27/6 ⇒ Q = +
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3
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2

3
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5
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, +
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,−

1

3
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1 A

mρ ! (f, mq∗) ! E > mt

T̂ ∼
Nc

16π2
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L,R

v2Λ2

f 4

δgZbLbL
∼

Nc

16π2
cLc4q

v2Λ2

f 4
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L,R ∼

(
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)4
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(
yL

gρ
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cL, cR, c4q #= 1

q∗L = 27/6 ⇒ Q = +
5

3
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2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3
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1 A

T̂ ∼
Nc

16π2
c2

L,R

v2Λ2

f 4

δgZbLbL
∼

Nc

16π2
cLc4q

v2Λ2

f 4
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L,R ∼

(
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mρ

)4
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(
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5

3
, +

2

3

15/3, 1−1/3, 32/3 ⇒ Q = +
5

3
, +

2

3
,−

1

3
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1 A

T̂ ∼
Nc

16π2
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L,R

v2Λ2

f 4
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∼

Nc

16π2
cLc4q

v2Λ2

f 4
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L,R ∼

(
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)4
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(
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)6
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3
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Feasibility 6a: Composite qL

Case (a):

Case (b): allowed composite qL parameter space very small

large compositeness light custodiansX

X softer bounds for

1 A

m
f
L,R

mq∗ ∼ (500, 1000) GeV

1

from WED:

1 A

εt =
m2

t

m2
q∗

! 1

mρ " mq∗ " mt

mq∗ ∼ mρ

√
1 −

c

α

δgZbLbL
= −δgSM

bL
3c4qξ

[
cLξ

(
4

εt

log
m2

ρ

m2
q∗

+ 4 log εt

)
+ 2 log εt

]

ξ = ξR =
1

4

T̂ = T̂ SM
top

[
c′ 2R ξ2

(
1

εt

+ 4 −
2

εt

log
m2

ρ

m2
q∗

)
− 8c′Rξ − εt

(
19

3
+ 2 log εt

)]

δgZbLbL
= 0

cR = 0

c
(3)
L = −c

(1)
L ≡ cL

1

1 A

f = 500 GeV

1

T contour plot

X bounds from ZbLbL can be hard (c4q dependence)

1 A

mρ = 2.3 TeV

1
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Feasibility 6b: Composite tR

Case (b):

Case (a): no serious bounds on composite tR parameter space

X

X regions with positive T
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Pheno 1: Effective Lagrangian
Model independent analysis of composite top consequences

compo qL

It is important to notice that the mass of the custodians is given by MQ = yLf cot θL that in the

composite limit tends to zero. Therefore in this limit the custodian states become lighter than

the other resonances, MQ ! Mρ. This effect has also been observed in 5D models in the limit in

which the 5D masses take negative values and the massless states become localized towards the

IR-boundary [10]. Nevertheless, it is hard to understand what could be the origin of this new mass

scale MQ !Mρ in a generic strongly-coupled theory. The effect of having light custodians will have

important phenomenological consequences as we will see later.

Similarly, in the right-handed top composite limit, Eq. (9), one finds that the custodians, given

by (1− Pt)[TR] ≡ P̃t[TR], are also light MT !Mρ.

From now on we will generically denote by q∗ the custodians and by Mq∗ their masses.

3 Low-energy effective lagrangian for a composite top

At energies below the resonance masses, the effective theory corresponds to the SM plus higher-

dimensional operators. These operators are induced by integrating out the heavy resonances at Mρ

and the custodians at Mq∗ . In the first case, the higher-dimensional operators are suppressed by

Mρ. Among these operators, we will be interested in those carrying extra powers of gρ such that the

effective scale that suppresses these operators is in fact gρ/Mρ = 1/f , that in the limit considered

here gρ > 1, is larger than 1/Mρ. These are operators with extra composite tops or Higgs fields (or,

in Higgsless theories, the Goldstones) which couple to the BSM resonances with a coupling of order

gρ. Let us present the list of these operators for the case of a composite qL, Eq. (8). Up to order

p2/f2, we have three dimension-6 operators of this type [5]

ic(1)
L

f 2
H†DµHq̄LγµqL +

ic(3)
L

2f 2
H†σiDµHq̄LγµσiqL + h.c. +

c4q

f 2
(q̄LγµqL)(q̄LγµqL) . (11)

We are using the two-component notation H for the Higgs multiplet:

Σ = (H̃ , H) where H†H = v2 , (12)

and H̃ = iσ2H. Notice that we are only including in H the Goldstones and not the Higgs particle.

The effects of a composite Higgs were already studied in Ref. [5]. In the case where v = f , we cannot

expand in H/f , and we have, at the same leading order as the first two operators of Eq. (11), a

dimension-8 operator
ic′L
f 4

H†DµH(q̄LH)γµ(H†qL) . (13)

The second class of operators that we will be interested in are those induced by integrating out the

custodians. These operators are suppressed by Mq∗ . Since the qL’s custodial partners do not mix

5

with qL (they have different quantum numbers), operators induced at tree-level cannot contain qL.

The custodians of qL, however, can mix with tR through the Yukawa coupling generating higher-

dimensional operators involving tR and H and carrying powers of y2
t /M

2
q∗ . The leading operator of

this kind is given by
ic̃Ry2

t

M2
q∗

H†DµHt̄RγµtR . (14)

At this point it is worth emphasizing the crucial difference between the two classes of operators,

Eq. (11) and Eq. (14). The origin of the operator in Eq. (14) is the mixing of tR with the custodians.

Therefore the strength of this operator is related to the lightness of these extra states. On the other

hand, the strength of the operators in Eq. (11) measures the degree of compositeness of the top

that do not have to be related to new light degrees of freedom.

We can repeat the same analysis for the case of a composite tR. Up to order p2/f2, we have two

operators [5]
icR

f 2
H†DµHt̄RγµtR +

c4t

f 2
(t̄RγµtR)(t̄RγµtR) , (15)

while at order p2/M2
q∗ we have (from integrating out the custodians of tR)

ic̃(1)
L y2

t

M2
q∗

H†DµHq̄LγµqL +
ic̃(3)

L y2
t

2M2
q∗

H†σiDµHq̄LγµσiqL + h.c. . (16)

The coefficients ci are O(1) constants whose values depend on the details of the BSM sector.

In certain cases, as we will see, these coefficients fulfill certain relations due to the underlying

symmetries of the BSM. For a composite Higgs model the values of cR,L are given in Ref. [7]. In

these models the four-fermion interactions arise from integrating out heavy vector resonances. From

a color resonance, assuming a coupling gρ to the top, one has

c4t = c4q = −1

6
, (17)

while for a singlet resonance one gets c4t = c4q = −1/2.

4 Present experimental constraints

In this section we want to study how much the present experimental data limits the compositeness of

the top. Although important effects of the top compositeness could be revealed in flavor physics, we

will not discuss them here (see, however, Ref. [5]). These effects strongly depend on the underlying

theory of flavor, and therefore are very model dependent. Discarding flavor physics, the most

stringent bound on the composite qL case comes from ZbLb̄L that has been measured at LEP at
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in our  framework:

can be larger than those to T̂ for the case (a). For example, for c4q ∼ −1/6, cL ∼ −0.2, ξ ∼ 1/4, and

Mρ ∼ 2.3 TeV, Mq∗ ∼ 800 GeV, the contributions to T̂ are below the experimental bound but we

find δgbL/gbL ∼ 0.013 that is larger than the experimental constraint −0.002 ! δgbL/gbL ! 0.006.

These sizable contributions to Zbb̄, however, scale with c4qcL ∝ (yL/gρ)6, while those to T̂ are

proportional to c2
L ∝ (yL/gρ)4; therefore the contributions to Zbb̄ can be parametrically suppressed

with respect to those to T̂ if yL is slightly smaller than gρ. For a composite tR, contributions to Zbb̄

proportional to the custodian mass or logarithmically sensitive to Mρ are not present, and therefore

Fig. 6 will not suffer large modifications.

For very light custodians, the constraints from Zbb̄ can be as important as those from T̂ [15,16].

This implies that the allowed low-Mq∗ regions of Figs. 2 and 6 could be sligthly reduced by the Zbb̄

constraints. We leave this calculation for a future publication.

5 Phenomenological implications at future colliders

In this section we want to study the experimental implications of having one of the top chiralities

being a composite state. For this purpose, the effective lagrangian of section 3 gives a useful model-

independent parametrization of the composite-top new interactions. We will not consider physics

involving the Higgs that has been already studied in Ref. [5], and we will only concentrate on top

physics.

5.1 Anomalous couplings

The coefficients c(1),(3)
L and cR give rise to new contributions to the top coupling to the SM gauge

bosons. In particular, for the ZtLt̄L, WtLb̄L and ZtRt̄R couplings, we have respectively

δgZtLtL

gZtLtL

=
(c(3)

L − c(1)
L )ξ

1− 4
3 sin2 θW

,
δgWtLbL

gWtLbL

= c(3)
L ξ ,

δgZtRtR

gZtRtR

=
3cRξ

4 sin2 θW
. (48)

In the framework considered here we have c(3)
L $ −c(1)

L and cR $ 0, and therefore only deviations

on the tL couplings can be sizable. To observe these deviations is not going to be easy. At the

LHC, top quarks are mostly produced in pairs via the strong gluon fusion process gg → tt̄, decaying

to Wb. To measure the WtLbL coupling, however, a single top must be mostly detected from the

process ub → dt. At the LHC this coupling could be measured with a sensitivity around 7% [17],

implying that one could see deviations if cLξ " 0.07. For the Ztt̄ coupling the situation is more

difficult, since it will not be able to be measured at the LHC. The ILC, however, will be the suitable

machine to unravel the composite nature of the top. Studies show that the top couplings could be

measured with an accuracy as low as 1% [18].
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Pheno 3: Four-top production
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Pheno 4: Four-top production
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Conclusions

Present experimental bounds do not rule out this possibility.

four-top production enhancement = genuine (difficult but viable)

anomalous couplings

Also direct searches of top partners (Contino, Servant) and flavour transitions

X

The top quark is the most sensitive fermion to the strong 
sector responsible for EWSB and SM masses.

Can one of the chiralities of the top be fully composite?

Even we can get positive T contributions (mainly for c negative), needed in 
these models for agreement with EWPT.

x

x

X Can one test this possibility at the LHC?
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T and Zbb results
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Four-top production
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Can we distinguish between compo qL or compo tR in 4-top production?

studying angular distributions of decay products (l+)
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Flavour constraints
Contraints on top compositeness from flavour physics?

flavour contraints = indirect (more model dependent)
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WtLbL coupling:

Ztt couplings: mild constraints
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contraints at 15%

generically = some extra flavor structure is needed


