Introducing LCG Views

Pere Mato
LIM Meeting, 16th January 2016
Motivations

- **Easy runtime environment setup**
 - Current methods allow to setup a running environment starting from a top level package/application (following dependencies)
 - Setting-up the environment for a full LCG release is not obvious

- **Fast runtime environment setup**
 - Scripts to setup the environment are slow (need to scan AFS or CVMFS)

- **Faster runtime**
 - Reducing the PATH and LD_LIBRARY_PATH can speedup runtime

- **Generic Docker images**
 - Docker images making use of the software in CVMFS
 - Time to setup environment \gg time to start the Docker container
What's a View

AFS/CVMFS

- `<package>/<version>_hash/<platform>`
 - all packages with all versions and all platforms
- `<release>/<package>/<version>/<platform>`
 - all packages with single version and all platforms
- `<release>_id/<platform>`
 - all packages with single version compacted and all platforms

LCGInstall (scripts)

CreateView (scripts)

package selection

/software/sft.cern.ch/lcg/views/<release>/<platform>/bin
lib
include...

soft links
Selection

- Defining the set of packages
 - The default is to take all packages in a LCG release
 - Sub-setting is possible

- Only one version per package
 - Need a rule for multi-version packages (i.e. MC generators)
 - Packages with major versions (i.e. Qt vs. Qt5)

- Selection of top level directories
 - Many unneeded files with big chances of clash (README, …)
 - Current list: ['aclocal', 'cmake', 'emacs', 'fonts', 'include', 'macros', 'test', 'tests', 'bin', 'config', 'etc', 'icons', 'lib', 'lib64', 'man', 'tutorials', 'share']
Building an LCG View

Script developed by Ivan Razumov

1-2 minutes to produce the view

File clashes while creating the soft-link are properly reported

 Possibility to fix them by fine-tuning the package ‘backlist’, top level directories, etc.

```
lcgcmake/cmake/scripts/create_lcg_view.py \
   -r <release> \
   -p <platform> \
   -l /cvmfs/sft.cern.ch/lcg/releases \
   -d -B \
   /cvmfs/sft.cern.ch/lcg/views/<release>/<platform>
```
Sourcing a single and simple file sets the full environment for the complete view. It defines trivially:

- PATH, LD_LIBRARY_PATH
- PYTHONPATH
- CMAKE_PREFIX_PATH
- ROOTSYS, ROOT_INCLUDE_PATH
- Other variables can be added if needed…
The command will open a web browser in which the user can create his/her notebooks.

The notebook will inherit the full environment:

- All Python modules available
- All HEP libraries available
 - E.g. ROOT, Fastjet, Geant4, …
Use Case: ROOT as a Service

* ROOT as a Service ongoing development
 * Based on CERN SSO, EOS, CERNBox, CVMFS, Dockers, OpenStack, etc.
* The user is able to select the LCG software release at the time of spawning it own server
Use Case: Building Software

Build B1 basic Geant4 example

- Create a build directory:
  ```bash
cd build
  mkdir build
  
  cmake /share/Geant4-10.1.2/examples/basic/B1
  ```
- Build the example:
  ```bash
  make -j10
  ```

Run B1 basic Geant4 example

- Set environment variables for data files:
  ```bash
  setenv G4DATA /cvmfs/geant4.cern.ch/share/data
  setenv G4NEUTRONHPDATA $G4DATA/G4NDL4.5
  ```
- Run the example:
  ```bash
  ./exampleB1 run1.mac
  ```

Build and Run the Event ROOT example

- Download the Event ROOT example:
  ```bash
  wget http://root.cern.ch/download/event.tar.gz
  ```
- Extract the tarball:
  ```bash
  tar -zxf event.tar.gz
  ```
- Navigate to the build directory:
  ```bash
  cd event/build
  ```
- Configure the build:
  ```bash
  cmake ..
  ```
- Build the example:
  ```bash
  make -j10
  ```
- Run the example:
  ```bash
  ./Run
  ```
Conclusions

• LCG views has been demonstrated
 • Thorough validation is still required
 • Already useful for a number of use cases

• A number of problems needs to be tackled
 • Delivery of package data (e.g. Geant4, LHAPDF, etc.)
 • Installation of cmaketools package needs some tuning

• Project integration and testing builds on top of LCG Views?
• Experiment software on top of LCG Views?
Back-up Slides
Building CORAL

* Specially for Andrea

```bash
wget http://service-spi.web.cern.ch/service-spi/external/tarFiles/CORAL-3_1_1.tar.gz
tar -zxf CORAL-3_1_1.tar.gz

cd CORAL-3_1_1
mkdir build;cd build

cmake .. -DBoost_NO_BOOST_CMAKE=ON -DBINARY_TAG=x86_64-slc6-gcc49-opt
make -j10
```