

Theatre of Dreams: Beyond the LHCb Phase 1 Upgrade Manchester, 6/4/2016

The Physics Potential of Upstream Tracking

Outline

- Physics with Upstream Tracks
- Current Upstream Tracking Status
- Possible Improvements
- Ongoing Work
- Conclusions

Lots of Potential

- There is many physics out there that could be done with Upstream tracks (if they had good momentum resolution...)
- Multi-Body decays: B_s⁰→D_s⁺D_s⁻, D→hhhh
- Charm physics: $D^{*+} \rightarrow D^0 \pi^+$
- b-baryons: $\Sigma_b^+ \rightarrow \Lambda_b^0 \pi^+$
- See Sheldon's talk for more

The Study

- Used IMCReconstructible tool on LHCb MC samples
- Some definitions (from...)

Long: 3r+3phi Velo clusters and 1x+1stereo clusters in each of the 3 seed stations Upstream: 3r+3phi Velo clusters and 3 TT clusters

• Studies:

Momentum distributions Potential decay efficiency

Potential with Upstream Tracks - Soft pions

Momentum Distributions

- $D^{*+} \rightarrow D^0 \pi^+$ and $\Sigma_b{}^0 \rightarrow \Lambda_b{}^0 \pi^+$ considered
- Plot soft pion momentum distribution for
 - generated (white filled)
 - missed by Long (red filled)
 - potential Upstream (blue filled)
- Most of the missing particles have momentum < 2 GeV/c
- Could be significantly recovered with Upstream (~65%)

COLE POLYTECHNIOUE

Physics - Soft Pions

Potential with Upstream Tracks - Multibody

Momentum Distributions

- $B_s^0 \rightarrow D_s^+ K^- \pi^+ \pi^-$ and $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$
- Plot momentum distribution of final state particles
 - generated (white filled)
 - missed by Long (red filled)
 - potential Upstream (blue filled)
- Momentum distribution slightly harder than before
- Still a significant part of the spectrum is missed by Long tracks
- Could be significantly recovered with Upstream (~50%)

COLE POLYTECHNIQUE Édérale de lausanne

Physics - Multibod

Potential with Upstream Tracks - Some Numbers

Efficiency

- Previous numbers can be misleading to estimate efficiency since at least one track that passes the selection is needed
- The table shows the efficiency of signal candidates that are reconstructible if all the final state particles are reconstructible as Long or Long+Upstream

Decay	ε _{Long} (%)	ε _{Long+Upstream} (%)	Increase(%)	factor
$B^{0}_{s} \rightarrow D_{s}^{+} K^{-} \pi^{+} \pi^{-}$	10.8	33.5	22.7	3.1
$\Sigma_b^0 \rightarrow \Lambda_b^0 \pi^+$	44.9	80.6	35.7	1.8
$D^{*+}\rightarrow D^0\pi^+$	31.9	76.6	44.7	2.4
D ⁰ →K+K-π+π-	11.4	40.1	28.7	3.5

VeloTT Algorithm

- Starts from Velo seeds, extrapolates in TT and looks for corresponding hits
- Not used in Run1
- Improved in Run2 and used in default reconstruction as a seed for the Forward in HLT1

Thanks to B. Storaci and E. Bowen - LHCb-PUB-2013-023

Quite fast: used in HLT1 Momentum resolution 15-20% Efficiency ~65% (not Long)

COLE POLYTECHNIOUI

Status

Old VeloTT Algorithm

Upstream Tracking

- Data from CharmCompleteEvent Reco14/Stripping21
- Starting from $D^0 \rightarrow K^-\pi^+$ candidate, reconstructing D^{*+} using both Long and Upstream tracks
- Efficiency seems very low (processed the same number of events)

Upstream Tracking Performance - Run2

New VeloTT Algorithm

Upstream Tracking

- Simulation from $D^0 \rightarrow K^-\pi^+$ Reco15/Stripping23 (Jun2015 conditions)
- Starting from $D^0 \rightarrow K^-\pi^+$ candidate, reconstructing D^{*+} using both Long and Upstream tracks
- Similar resolution as 2012 but higher upstream reconstruction efficiency (x2.5)

Hits after Magnet Kick

• New stations after the magnetic field kick could improve momentum resolution

Tracking

• VeloTT Efficiency

Should be carefully studied to check the correspondence with reconstructible and reconstructed tracks

Check Momentum Resolution improvements

- 1. Simulate hypothetical detector response
- 2. Perform a proof-of-principle study

• (A very short list of) Questions:

- a. Is a single layer enough?
- b. How much the resolution would improve?
- c. What are the detector requirements?

Unfortunately still ongoing - stay tuned!

A Proof of Principle - Upstream+

Performance Gain in Current LHCb?

- The red track above is currently not reconstructed in LHCb
- A tracking algorithm can be written to reconstruct it and measure its momentum
- This could have a direct impact in current LHCb reconstruction

Ongoing Work

- Study π^+ from $D^{*+} \rightarrow D^0 \pi^+$ in data and MC to implement a reconstruction algorithm
- Basic idea: start from VeloTT track; use momentum estimate to open a search window; add hits; refit.

Proof of Principle

Low-Momentum Physics

- Low-momentum tracks may increase our efficiency maybe not as much as a 2x luminosity, but they can help
- Upstream tracks currently not used in LHCb reconstruction it's anyway important to try to get the best from our detector
- A plan is made to study whether adding stations inside the magnet could be useful
- Outcome could be helpful for current detector already (Upstream+)

Is a factor 2 efficiency gain possible?

Conclusions