Towards a future upgrade of LHCb-RICH

Theatre of Dreams

LHCb workshop: Manchester

Preamble

➤ Part 1: Ideas to re-design the LHCb-RICH system for 10³⁴ cm⁻² s⁻¹ luminosity

- Follow up from the presentation of Carmelo
- Introduction of Silicon photomultipliers in LHCb-RICH
- All the results shown are from recent studies and are preliminary

- ➤ Part 2: A new paradigm for Cherenkov detector in the future
 - Introduction of Photonic crystal as Cherenkov radiator in RICH

Preamble

- The current RICH upgrade designed for a luminosity of 2 X 10 ³³ cm-² s⁻¹
- RICH performance depends on various factors:
 - Occupancy of hits in the detector plane
 - Cherenkov angle resolutions: (a) Chromatic uncertainty (b) Emission point uncertainty
 (c) Uncertainty from pixel size in the photon detector
 - Resolution of the charged track direction in the RICH
 - Photon yield : Number of hits per charged track
- The design also need to take into account various constraints:
 - Minimize the number of photon detectors and hence detector plane area
 - Interference with other sub-detectors in terms of space
 - Shielding from magnetic field, ease of installation, detector cooling etc.
- This presentation:
 - Explore the option to use Silicon photomultiplier: Better QE and pixel size than that of MaPMT
 - Other options to improve the performance

Refractive index and QE

C4F10 refractive index vs wavelength

Simulation of Silicon Photomultiplier

- For now using a pixel size of 1 mm * 1mm
- In order to see the effects in a short time period, with minimum changes to existing software structure:
 - Set the pixel size for the "MaPMT" in the database to 1 mm * 1mm
 - Set 25 X 25 pixels in each 'MaPMT'.
 - All this done only for the small MaPMTs in RICH1 and RICH2.
 - The large MaPMT in RICH2 kept unchanged for now.
 - The rest of the geometry is unchanged for now
- Use particle gun and B-events as appropriate
- Reconstruct the Cherenkov angle to estimate the resolutions
- Run the Gauss-Boole-Brunel chain to test the PID performance
- For now use Lumi20 luminosity for testing PID performance.

	Luminosity cm- ² s ⁻¹	# bunches	L _B cm- ² s ⁻¹	Beam Energy (TeV)	V
Lumi20	20 X 10 ³²	2400	0.834 X 10 ³⁰	7	7.6
Lumi100	100X 10 ³²	2400	4.17 X 10 ³⁰	7	38

RICH1 resolutions

raa

Rich1Gas ReconsD1E1- Recons D2E1 Pixel error

Using particle gun at 80 GeV/c

Current standard upgradeusing MaPMT (pixel size ~ 2.8 mm)

Cherenkov angle D1E4 reconstruted from Rich2 Gas radiator Small PMTs

RICH2 Resolutions

➤ All plots for only the small PMTs

Using MaPMT

Using silicon PM in the inner part

RICH Yield

Using MaPMT

Using SiPM

XY Location of Rich1 Gas PMT hits on PMT Plane

Occupancy

SiPM pixel occupancy in Percent

Occupancy averaged over pixels= Number of hits in SiPM X 100/(25 X 25)

Lumi20

RICH Upgrade Kaon ID: RICH PID performance

 Improvement in PID in the 20-100 GeV/c region, when using SiPM.

Red : Kaon ID efficiency

Blue: Pion mis-ID probability

• For the region below 20 GeV/c, further review/work needed to optimize the program for SiPM

RICH1 SiPM resolutions

Width=0.44 mrad

0.052 0.054 0.056

0.05

1000

500

0.046 0.048

- Wavelengths below 400 nm cut-off using filter.
- Using Particle gun

Source Reslution (mrad)	SiPM >400 nm	SiPM	MaPMT
Emis. pt	0.40	0.38	0.37
Chromatic	0.19	0.43	0.58
Pixel	0.16	0.16	0.45
Overall	0.44	0.55	0.77

- With 400 nm cut-off, the overall resolution dominated by emission point error.
- To further reduce the emission point error, optics geometry would need to be modified. $_{12}$

Occupancy XY Location of Rich1 Gas PMT hits on PMT Plane 361_copy 800 0.5 600 0.4 400 200 0.3 -200 0.2 -400 0.1 -600

Using SiPM and 400-nm cut-off.

-800 -600 -400 -200

-800

Luminosity $1X10^{34}$ cm⁻² s⁻¹ (Lumi100) = 5 * Lumi20. With 400 nm-cut off, approx ratio to lumi20= 5/2=2.5.

800

600

SiPM pixel occupancy in Percent

If the current MaPMTs were used for this luminosity with no geometry change, the peak occupancy would exceed 100 %

Summary of Part 1

- For the upgrade RICH setup, the resolutions and yield improve with using Silicon photomultipliers
- The PID performance with Silicon photomultipliers show improvement in the 20-100 GeV/c region.
 The optimization of the reconstruction program for the full region is under study
- In order to further improve the resolutions, the geometry of the optics would need to be modified.
 This is work in progress.
- For evaluating the PID performance at 10 ³⁴ cm⁻² s⁻¹ with in a proper way, solutions to few software issues would need to be implemented.

Photonic Crystals for Particle Identification

Parrot (scarlet macaw) in a tropical forest

www.pnas.org/cgi/doi/10.1073/pnas.1204383109

Optical micrograph of blue feather barbs

CERN Courier Aug23, 2005 Phys. Rev. E 72, 010902 (2005)

Hint for making Cherenkov detectors?

Photonic Crystals

- Periodic arrangement of objects with two different refractive indices.
- Lattice constants comparable to the wavelength of light in the material
- electrons in pure semi-conductor: similar features to photons in photonic crystal

- Cherenkov radiation:
 - Physical origin is a mixture of conventional Cherenkov radiation and Transition radiation
 - Photon propagation in the crystal in the form of Bloch waves
 - All the properties can be derived from solving Maxwell's equations for periodic lattice
 arXiV:0808.3519
 - There is no Cherenkov Threshold
 - Cherenkov cone can be forward or backward

Starting from two media with refractive indices n₁ and n₂, create a new effective refractive index n₃.

r=cylinder radius a= lattice constant

Particle Identification

PRL 113, 167402 (2014)

Sensitivity= $\theta_{\text{ eletron}}$ – $\theta_{\text{ proton}}$

Transformation optics:

Longitudinal stretching=F=1.005 : Shift curves to right

Transverse stretching = G=10 : Increase θ

Production of Photonic Crystal

- Parameters relevant for Cherenkov photon production
 - Filling factor: cylinder radius /lattice constant
 - Refractive indices of the two media

- Production: 3D printers, photolithography etc.
- Detector seminar at CERN: April 15, 11 am https://indico.cern.ch/event/516572/

Plans: Produce prototypes and test them in a testbeam

Summary Part 2

- Using a photonic crystal can potentially extend the momentum range for RICH
- Further investigations underway.

BACKUP SLIDES

CF4 refractive index vs wavelength

Silica aerogel refractive index vs wavelength

Number of hits

8000

Lumi-100 with 400-nm wavelength cut-off and using SiPM