Tracking Technology

Antonio Pellegrino Niels Tuning Uli Uwer

6 april 2016

Many thanks to Hans Dijkstra, Christian Joram, Blake Leverington, Marcel Merk, Hansmann-Menzemer, and others for

Disclaimer:

- 1) More questions than answers...
- 2) Aimed to collect *existing* information

Previous Upgrade Considerations

1st Upgrade Workshop, Edinburgh, <u>11 Jan 2007</u>

M.Needham: <u>Occupancy estimates</u>

More recent talks:

M. Ferro Luzzi: <u>Tracker Upgrade Overview</u> (<u>Nov 2011</u>)

Merk: Past Experience with Tracking Opt (Mar 2012)

- H. Dijkstra: <u>IT for the upgrade</u> (<u>Nov 2013</u>)

U. Uwer: <u>Challenges for SciFi at high lumi</u> (<u>Apr 2015</u>)

TDRs:

- Letter of Intent: <u>CERN-LHCC-2011-001</u> (Mar 2011)

- Framework TDR: <u>CERN-LHCC-2012-007</u> (Apr 2012)

- Tracker TDR: <u>CERN-LHCC-2014-001</u> (Feb 2014)

SciFi: Radiation on fibers

- Maximum dose on fibers: 35 kGy after 50 fb⁻¹
- Dose(1st module) ~ 5-10 x Dose(2nd module) ?
 - > 2nd mod under similar conditions as 1st mod in current upgrade?

SciFi: Radiation on fibers

- Significant light loss also in outskirts
 - > Challenge....

SciFi: Radiation on SiPM

- Dose on SiPM: 80 Gy after 50 fb⁻¹
- Neutron flux SiPM (~10¹² n_{eq}/cm²) causes large dark count rates
 - Challenge...

5

SiPM operation beyond 50 fb⁻¹

- The neutron fluence scales with the integrated luminosity. I am
 hesitating to assume a significant improvement of the shielding w/r to
 what we are currently planning.
- At neutron fluences larger 1.2 · 10¹² the SiPMs will have DCRs of 40 MHz and more (noise HITS in every channel for every BX).
 A further decrease of the operation temperature seems difficult.
- Even if the cluster rate will be significantly lower it is not obvious how to operate today's SiPMs under these conditions.

Historical note: occupancy < 10%

Occupancy in OT stations: IT/OT boundary

Many occupancy distributions were studied. Final design requirement was simple:

- For the seeding stations 10% average occupancy in hottest areas was tolerated
- For the track-following stations (magnet) 15% occupancy in hottest area was tolerated

Historical note: occupancy < 10%

OT Occupancy rule of thumb

- Occupancy spec is difficult to make an exact science:
 - Pattern recognition: 5% average occupancy is easy while 50% occupancy is impossible.
 - Alternative approach to make a spec: relate occupancy to efficiency
- Spec_1 (Occupancy-tail)
 - Calculate the fraction of events with occupancy larger then 40% and set a spec for average occupancy
- Spec_2 (Inefficiency-effect)
 - Inefficiency due to multiple hits should not dominate the detector efficiency for a good design
 - For a given OT straw with a hit, the probability to be hit by a second particle is equal to the occupancy
 - To first order in occupancy that efficiency is given by:
 - Eff_straw = $1 (0.5 \times Occ)$
- This resulted in the spec for the average occupancy: Occ < 10%
 - Local occupancy fluctuations can be significantly higher
- M. Merk 19 Mar 2012
- NB: a maximum occupancy of 10% is probably too ambitious for SciFi:
 - A. The resolution over pitch ratio
 - Straws can accommodate a higher occupancy than Si strips

Mechanical considerations

Would need shorter SciFi modules to limit occupancy

- Is it affordable to produce 15% extra mats+modules?
- ➤ Would just a modified central module suffice? (→ see Greg)

Larger beamhole

- Effect of reduced acceptance on tracking?
 - Loose 20% of B-tracks
 - Reduce Seed ghost rate $19\% \rightarrow 1\%$
 - Reduce Forward ghost rate 39% → 30%

	No IT coverage	Full : SciFi
Seed ghostrate	1.3 %	19.4 %
Seed eff (fromB)	64.6 %	83.2 %
Forward ghostrate	30.4 %	38.6 %
Forward eff (fromB)	71.5 %	90.5 %

B_s \rightarrow φφ, v=7.6, no spillover Jacco de Vries 19 Feb 2014

Mechanical considerations

Would need shorter SciFi modules to limit occupancy

> Is it affordable to produce 15% extra mats+modules?

Intermezzo: OT assembly > 2010 ?

From OT experience, we know it is very difficult to resume detector construction 5 years later...

Cleanroom: demolished at Nikhef and HD

Materials: procurement of wire, straws, wirelocator, PCB ?

Support panels: made in house (Cracow), difficult

Quality: software, measurement tools?

Expertise: leaves

Tooling: we tried to keep it...

High occupancy in the center

- Consider <u>SciFi + light-IT</u> option?
- Analogy of <u>OT + light-IT</u> option for current upgrade

High occupancy in the center

- Consider <u>SciFi + light-IT</u> option?
- Analogy of <u>OT + light-IT</u> option for current upgrade
- Occupancy? Tracking? (→ see Greg)
- Radiation tolerance fibers?
- Radiation tolerance SiPMs?
- Mechanical considerations?
- Light-IT?

Mechanical considerations

Would need shorter SciFi modules to limit occupancy

Would need space in z to mount a new IT

- > Is there space for a 3rd rail, next to the 2 SciFi rails?
- No...: space is consumed by SciFi

OT and IT Rails:

Mechanical considerations

Would need shorter SciFi modules to limit occupancy

Would need space in z to mount a new IT

- > Is there space for a 3rd rail, next to the 2 SciFi rails?
- Or could we mount an "IT-light" on the SciFi ?
 - Possibly an IT-<u>light</u> is thinner/lighter/compatible ?

"IT-light" R&D

Documentation (Hans Dijkstra et al.)

- LHCb-INT-2016-011 Assembling and testing of silicon prototype module
 for the fall-back solution of the LHCb Tracking upgrade
- <u>LHCb-INT-2014-006</u> Airflow induced vibration of the Si-IT prototype
- <u>LHCb-INT-2014-005</u> Radiation environment and cooling of the Si option for the IT upgrade
- <u>LHCb-INT-2013-063</u> Report on SI-IT Prototype Modules R&D for the LHCb Upgrade
- LHCb-INT-2013-048 Simulation and tracking performance of the Si IT light detector

Hans Dijkstra, Sergii Kandybei, Eric van Herwijnen, ..., ...

Why IT-light?

Many hits from secondary interactions in IT material:

Original IT-light: big

	IT-now	SiIT light	
coverage B decay tracks	28~%	47%	
Max OT-occupancy	$\sim 43 \%$	$\sim 22~\%$	$B_s \to \phi \phi, \ \nu = 7.6$
Max IT-occupancy	$\sim 7.5 \%$	$\sim 3.4~\%$	$B_s \to \phi \phi, \ \nu = 7.6$
$X/X0$ for $\eta > 3.5$	$\sim 15~\%$	$\sim 5.4~\%$	20.0 cm
Nr sensors/layer	42	204	
Nr layers	12	10	
Nr stations	3	2	

121.15 cm

- Cool only sensors, not electronics
 - Air cooling, checked for vortex induced vibrations
- Light-weight (vertical) carbon support
- Aluminum flexible microcables (no bonds)
- ~10 kg per full station large IT-light (4 layers)

Small IT-light?

IT-light at present-IT dimensions? (see Greg)

- Cool only sensors, not electronics
 - Air cooling, checked for vortex induced vibrations
- Light-weight (vertical) carbon support
- Aluminum flexible microcables (no bonds)
- Weight of full station small IT-light (4 layers)?

IT-light

6 Conclusions

The prototype module for the fall-back solution of the LHCb Tracker upgrade was successfully assembled using TAB-flex connections and Alibava Si pitch adapters. The design of the module is very similar to the final version that could be used in the "SiIT-light" detector. The basic properties of silicon sensors such as leakage current and capacitance were measured. The tests with β^- -source were carried out and demonstrated a signal to noise ratio S/N \sim 14, while the noise level is uniformly distributed over the channels. The obtained results show that chosen prototype assembly technology is a good approach for large area silicon trackers construction.

Hans Dijkstra & Sergeii Kandibey, <u>LHCb-INT-2016-011</u>
Assembling and testing of silicon prototype module for the fall-back solution of the LHCb Tracking upgrade

Tracking efficiency?

- At L= $2x10^{34}$, v=76
- Max occ: ~24%
 - Corresponds to v=30 for current IT
- ie. what is track eff. at v=30? (for current IT)

- Quantify performance in terms of occupancy
 - Where is boundary of 5% occ ?
 - See Greg

Conclusions

- Present SciFi limited to 2 10³³
 - Radiation levels
 - Occupancy, combinatorics
- Higher lumi would require an Inner Tracker
 - Size of IT?
 - Between present IT and "IT-light"?
- Construction of shorter SciFi modules ?
 - Best done as continuation of present SciFi construction
- Construct new light-weight IT ?
 - Less secondary particles
 - Smaller and lighter: easier to mount
 - Significant R&D has been done

Historical note... (M.Merk):

(My) Conclusions

- LHCb upgrade must be ambitious
- Status of technology is important
 - Success of a detector also depends on dedication to details in the design
 - Push material thickness to absolute minimum
 - Invest effort on mechanical stability and alignability
- Design must include safety margin to allow for future improvements
- Optimisation: usefull to have "robust" estimators for different options
 - Occupancy
 - Combinatorics
- Where pattern recognition is used try to find "honest" comparison
 - Algorithms don't have to be fully tuned to make relative comparisons
- Decisions often based on straightforward arguments ("common sense")
 - E.g. An upgrade cannot have worse resolution (I.P. or $\delta p/p$) than the original

Timeline?

- "Future upgrade: LS4"
- "Enhanced capabilities: LS3"
- SiPM and fibers suffer from high dose (even with larger hole)
 - Personal opinion: intermediate ambition, with new IT in LS3?

See talk by Nicola Neri for tracking ideas at very high lumi

250 fb⁻¹?