Occupancies in T1 at $\mathcal{L}=2\times 10^{34} cm^{-2} s^{-1}$

Greg Ciezarek

Nikhef

April 6, 2016

Background

- Past work suggests three problems for SciFi operation in future upgrade (U. Uwer):
 - 1. Occupancy per channel
 - 2. Radiation damage to fibres
 - 3. Radiation damage to SiPMs
- This talk will directly address point 1, which also has implications for 2.
- Point 3. not discussed here

Where is the problem with occupancy

	No IT	No ½ IT	No ¼ IT	No ¹ / ₈ IT	No ⁶ / ₁₀₀ IT	Full FT
Seed ghostrate	1.3 %	3.0 %	6.2 %	9.7 %	12.8 %	19.4 %
Seed eff (fromB)	64.6 %	70.7 %	75.2 %	78.3 %	80.6 %	83.2 %
Forward ghostrate	30.4 %	30.6 %	31.1 %	32.2 %	33.6 %	38.6 %
Forward eff (fromB)	71.5 %	77.9 %	82.2 %	85.5 %	87.6 %	90.5 %

- With current SciFi, removing an IT-sized region lowers the ghost rate by an order of magnitude (Jacco De Vries)
 - Occupancy is only a problem in the innermost regions
 - If we remove a large enough region, ghost rate will be under control for 10X luminosity

Simulated sample

- MinBias sample simulated with current upgrade geometry, but $\mathcal{L}=2\times 10^{34} cm^{-2} s^{-1}$ (Jacco De Vries)
 - Thanks to Mark Williams
- At present, tracking won't run on this sample (memory issues)
- For now, no detailed studies of efficiency / ghost rate
 - Use occupancy as a proxy
 - Make like-for-like comparision with current SciFi

Method

- Take MCParticles matching 'StableCharged'
- Transport to T1 Z location, save XY positions
 - Thanks to Laurent Dufour
- Count particle hits per 250 μm channel, divide by nEvents and call this occupancy
- Several caveats:
 - No clustering
 - No noise
 - No spillover
 - Secondaries simulated according to current upgrade geometry
 - \rightarrow no secondaries from new IT

SciFi at $\mathcal{L}=2\times10^{33}cm^{-2}s^{-1}$

- To get a baseline, determine occupancies for current upgrade geometry
- MinBias, $\nu = 7.6$
- Tracking performance acceptable at 2×10^{33} with this occupancy \rightarrow look for a SciFi+IT geometry which gives similar occupancy at $\mathcal{L}=2 \times 10^{34} cm^{-2} s^{-1}$

SciFi at $\mathcal{L}=2\times10^{34} cm^{-2}s^{-1}$

- Now raise luminosity by a factor 10
- Occupancies bad

1500

SciFi + IT

- SciFi + new detector with current IT dimensions
- Occupancy higher than current SciFi

SciFi + ITx2

- SciFi + new detector with 2x current IT dimensions
- Occupancy closer to current SciFi

SciFi + ITx3

- SciFi + new detector with 3x current IT dimensions
- Occupancy closer to current SciFi

SciFi + four module width IT

- Easier to have IT boundaries to exactly match SciFi module boundaries
 - IT extends exactly two modules either side of beampipe

SciFi + six module width IT

- Easier to have IT boundaries to exactly match SciFi module boundaries
 - IT extends exactly three modules either side of beampipe

Conclusion

- SciFi occupancy would be too high for future upgrade
- By adding a new inner tracker, this can be reduced considerably
- Current IT size looks too small, probably needs to be a factor 2-3 larger for $\mathcal{L}=2\times 10^{34}cm^{-2}s^{-1}$
 - Need detailed track reconstruction studies to see how high an occupancy we can get away with
 - Current estimates do not include Secondaries generated by IT!
- IT width of six SciFi modules looks a reasonable starting point