FairSHiP
Software for SHiP

Outline

- Status
- Future

Thomas Ruf (CERN)
FairSHiP

- Lightweight simulation, reconstruction and analysis framework
- Overall philosophy: Keep it simple.
 - Use directly external tools: root, geant4, pythia6/8, genfit, genie, … as much as possible.
 - Do not invent a FairShip kingdom, with specific interfaces, wrappers, etc.
 - Use Python as the glue between all the available tools and packages.

- Mailing list
 - ship-software@cern.ch (SHIP Collaboration mailing list dedicated to software)
 - Archive: https://groups.cern.ch/group/ship-software/default.aspx

- Web page

- More at Software Tutorial session today, [link](http://ship.web.cern.ch/ship/FairShip/default.html)
Status of Physics Simulation

- Setup in place to produce charm/beauty hadrons in thick targets, taking into account cascade processes.
 - Sample of charm hadrons used for HNL signal and muon/neutrino background simulation.
 - A first tuning of Pythia6 with available data at low energies done, further pursued by University of London.
 - Described in SHiP public note: [CERN-SHIP-NOTE-2015-009](#)

- HNL signals simulated using Pythia8 by decaying above charm/beauty hadrons
 - Branching ratios for decays of HNLs calculated as function of couplings and HNL mass on the fly
 - Branching ratios for charm hadrons to HNL mass to be committed next week,

- Neutrino interactions simulated with the Genie generator
 - To be done: Checking realism of the neutrino events with existing data.

- Muon background simulation
 - Geant4 for electromagnetic processes
 - Pythia6 for inelastic scattering, DIS

- Others:
 - NuageGenerator for ν_e detector simulation
 - Particle Gun
Status of Detector Simulation

- Detailed geometry for Mo/W/H\(_2\)O target, hadron absorber, active muon shield (optional: passive shield), cavern.
 - Assumptions about magnetic field in iron cross
 - Currently running the TP design with wide cavern
 - To be done: Shape of magnetic field in the corners, vertical ↔ horizontal

- Detailed geometry for \(\nu_\tau\) detector with sensitive elements
 - No digitization.

- Sensitive planes for the Upstream Veto Tagger and Timing detector
 - No digitization.

- Detailed geometry for the HS vacuum vessel, spectrometer magnet.
 - Magnetic field based on parametrization of Opera simulation result.
 - Sensitive liquid scintillator volumes. Some digitization made on the fly when calculating Veto response.

- Detailed geometry for the straw (veto) tracker
 - Digitization including detector timing resolution.
Status of Detector Simulation, cont.

- **Detailed geometry for ECAL.**
 - Digitization, cluster reconstruction exist.

- **Detailed geometry for HCAL**
 - No digitization, no cluster reconstruction.

- **Sensitive planes for the muon detector**
 - No digitization.

- **Optional:** Sensitive planes in front of ECAL for studying a Preshower detector which would provide neutral shower direction
Status of Reconstruction

- **Track reconstruction**
 - True pattern recognition exists and working. Need somebody to study in detail its efficiency and background
 - Current default: Fake pattern recognition based on association of hits with MC particles
 - Track fit using the Genfit package

- **Photon reconstruction**
 - No public code yet.

- **Particle ID**
 - Work started. First attempt, electron ID.
 - Muon ID missing digitization, otherwise resolution too optimistic.

- **Veto**: Simple tool to estimate response of UVT, SVT, SBT and ν_τ detector
Overview of simulated data

- **Charm hadrons**
 - Decays to muons and neutrinos
 - root://eoslhcb//eos/ship/data/Charm/
 - Cascade-parp16-MSTP82-1-MSEL4-ntuple_prod_18M.root
 - Decay-Cascade-parp16-MSTP82-1-MSEL4-ntuple_prod_18M.root

- **Muon/neutrino background after hadron absorber**
 - 10B events = 2 months
 - Need another large production to study effect of a magnetized hadron absorber
 - root://eoslhcb//eos/ship/data/Mbias/
 - pythia8_Geant4_xxx.root xxx=onlyMuons, onlyNeutrinos
 - $E > 100 \text{ GeV}$: $12.7 \times 10^9 \text{ pot}$
 - $E > 10 \text{ GeV} \text{ & & } E < 100 \text{ GeV}$: $1.22 \times 10^9 \text{ pot}$
 - $E > 1 \text{ GeV} \text{ & & } E < 10 \text{ GeV}$: $0.11 \times 10^9 \text{ pot}$
 - pythia8_Geant4_Yandex_xxx.root
 - $E > 5 \text{ GeV}$: $2.1 \times 10^9 \text{ pot}$
 - $E > 0.5 \text{ GeV} \text{ & & } E < 5 \text{ GeV}$: $0.1 \times 10^9 \text{ pot}$
 - pythia8_Geant4_Yandex2_xxx.root
 - $E > 10 \text{ GeV}$: $10.0 \times 10^9 \text{ pot}$

- **All combined with proper weights and charm replaced by cascade production:**
 - pythia8_Geant4-withCharm_xxx.root
Overview of simulated data

- Neutrino background events
 - Using as input muon neutrinos from cascade production
 - root://eoslhcb//eos/ship/data/neutrinoBackground/YandexProd-Dec-2015/
 - output_nu (\nu_{\mu \bar{\nu}}): 100 files x 640k events each
 - output_nubar (14=nu_{\mu}): 103 files x 1M events each
 - All with reconstructed data

- Muon background events
 - Muons passing shield and producing tracks in the detector:
 - /eos/ship/data/DAFreco/muonBackground/rareEvents_81-102.root
 - In addition, files for muon background studies for backscattering from concrete walls, EM interactions in material

Thomas Ruf
SHiP Collaboration Week February 2016
Future

- Main goal for this year: Optimization of the experimental layout
- Need to stay flexible. Don’t need (yet) everywhere sophisticated reconstruction algorithms, some shortcuts using MC truth should still be allowed for feasibility studies.

- For the physics simulation, still missing generators for dark photon, hidden scalars, …, essentially everything which is not HNL.
- Tuning and cross checking physics engines
 - Pythia6, Pythia8, GENIE, Geant4 (μ-scattering)
- For the reconstruction, highest priority should be on:
 - Charged PID
 - Neutral PID, γ and π^0 reconstruction, decay vertex with neutrals
 - Combining Veto information
 - Globally and locally
On the more technical side

Needed: bookkeeping tool to keep track of simulated data with different detector geometries, different physics, different versions of software.

- Sasha Baranov has set up a prototype, but needs some more iterations to fulfill the requirements: http://sashabarannov.github.io/ship-bkproto/

- My interpretation of current discussions (Andrey, Sasha, Fons, me):
 - The description of the data will be stored together with the data. Not yet clear at what level, directory only, or by file? Can easily add a Python object (text, numbers) to a root file.
 - Information should be required by the production script, updated by reconstruction step.
 - An agent should run regularly and make an inventory of the existing data. This updates a web page, database, with the list of files, description, file size, ...
 - Anybody interested in such an activity, mostly welcome!
Future, cont.

- For mass production of background, rely on Yandex cluster
 - Submitting jobs to SkyGrid and retrieving data is done in a semi-automatic way.
 - Write a mail to skygrid-users@cern.ch

 - Muon background, 10B events, ~2months
 - Neutrino background, 0.1B, ~4 weeks

- Last not least, technical help would be appreciated in
 - Optimizing storage. Some objects stored with ShipReco take twice the space than other stored via dedicated ROOT streamers.
 - Optimizing CPU in simulation (Geant4) step.
 - Fight against memory leaks. Prevent running long jobs.
Summary

Interesting times ahead!
Summary

Confident, we do better!
Summary

And finally, end here: