SHiP Muon System: Status and plans towards the Comprehensive Design Report

G. Lanfranchi – LNF-INFN

INR (Russia), INFN-Bologna, INFN-Ferrara, INFN-Frascati

Muon detector:

based on scintillating bars, with WLS fibers and SiPM readout

Detector has to be reoptimized, numbers will change

Requirements for the Muon System:

- 1) Positive identification of signals with muons in the final state with high efficiency;
- 2) Mild separation between muon and hadrons/electrons: studies performed for the TP and the Addendum showed that v-induced and muon-inelastic backgrounds can be rejected using only kinematic cuts and veto requirements;
 - → no need for highly performing PID system!
- 3) Help the timing detector in rejecting muon combinatorial background.

1) Positive identification of signals with muons in the final state with high efficiency:

Test beam held in October '15 at T9 area, CERN PS (see A. Montanari's talk):

Efficiency > 98% for 3 m long bars

2) Mild separation between muons and hadrons/electrons:

Simple request of hits in Fields of Interest with width region and momentum dependent obtained for the Technical Proposal with ~0.5 M muons/pions without magnetic field. To be redone with magnetic field (extrapolator available, thanks to T. Ruf).

Simple request of hits in some fields of interest in muon stations gives >99% muon efficiency for $<10^{-3}$ pion mis-identification

→ more than needed, system seems overdesigned.

3) Muon combinatorial background:

Random combinations of residual muon flux from proton interactions in the target can mimic signal if they form a (fake) vertex in the fiducial volume.

For $4x10^{13}$ pot/spill 1 sec long, several kHz of muons after the active filter are expected in acceptance: \rightarrow effectively rejected via a short time-coincidence.

Reconstructed, selected and not-vetoed di-muon events in 5 years in time window $\Delta T = 3.29 \sigma_T (99.9\%)$ as a function of the muon flux after the active filter.

SHiP

Test beam, October 2015, T9 area, CERN PS (see A. Montanari's talk):

Time resolution vs beam position

Time resolution for double-end readout is ~ constant at 0.8-1.0 ns over 3 m long bar.

A muon system with 4 stations, 2 views/station can provide time information with an accuracy of σ_t ~280 ps

Time resolution vs beam position

A muon system with 4 stations, 2 views/station can provide time information with an accuracy of σ_t ~280 ps

Test beam, October 2015, T9 area, CERN PS (see A. Montanari's talk):

Dependence of the time resolution with the integrated charge:

Points fit with the function: $\sigma(t) = p0 + p1/\sqrt{Npe}$ Asymptotic limit for time resolution is ~ 0.3 ns.

Still margin to improve.

R&D towards the Comprehensive Design Report

- 1) Optimization of the general layout: 12/2016 number of stations, bar dimensions, thickness of passive filters; then start mechanical drawings, engineering.
- 2) Final choice of the scintillator types, fibers, SiPM and bar dimensions: 6/2017.
- 3) FEE (design, prototypes and test): 6/2018
 - 3.1) design of a motherboard with:
 - a stage for **fine control of the SiPM bias voltages** to equalize the gains and to compensate temperature variations, with a channel by channel programmable voltage regulation with remote setting/monitoring;
 - a stage for **signal amplication/shaping**:
 - a stage for **signal discrimination**:
 - 3.2) design of a **TDC board with 100 ps time resolution** with data processed, zero suppressed, formatted, stored in local buffer and sent to the FARM;
 - 3.3) beam test of a final module instrumented with final electronic chain;

R&D towards the Comprehensive Design Report: interconnections between projects

Optimization of the general layout: cost

	Cost/unit (\$)	Quantity	Cost (k\$)
scintillating bars	25/ kg	11,5 t	288
WLS fibres	4 /m	23,000 m	92
SiPMs	30/ each	7 680	230
FEE	100 /channel	7 680	768
cables SiPM-FEE			
(including connectors and tooling)	25/channel	7 680	192
cables FEE-Ethernet concentrators			
(including connectors and tooling)	_	_	25
plugs and optical connectors WLS fibre-SiPM	10/pc	7 680	77
bar instrumentation	30/bar	3 840	115
support structure	_	_	280
support panels for the bars	$56,000/{ m pc}$	4	230
trailer tracks for support panels	28,000/each	4	113
installation			
(including toolings, mechanics, etc.)	_	_	100
Total (w/o iron filters)	_	_	2 510
iron filters	2.5 /kg	930 t	2 330
Total (w iron filters)			4 840

Current cost estimate: 2.5 M (active part) + 2.33 (passive filters, in kind?) = 4.84 M\$ Drop one station \rightarrow save 25% of the total cost

Increase bar width from 5 cm \rightarrow 10 cm (halve cost of FEE, cables, SiPMs, connectors):

 \rightarrow save 20% of the total cost (~0.8 M\$)

Resources needed for the Comprehensive Design Report

Item	Cost (kEuro)
2 test beams	2x10
R&D on scintillators, fibers, SiPMs	10
FEE mother board (design, prototypes)	15
FEE TDC board (design, prototypes)	15
TOTAL	60

Item	Person power 2016-2018
Optimization general layout, PID performance	1.0 FTE (physicist)
R&D scintillators, fibers, SiPMs (including test beams)	2 FTE (physicists) + 0.5 FTE (technicians)
Mechanical drawings, engineering	1 FTE (mechanical engineer)
FEE design, prototypes	1.5 FTE (electronic engineers)

Conclusions

- R&D for the muon system well on track.
- Milestones clearly identified.
- -Resources required for the Comprehensive Design Report seems to be within the reach of our Institutes but collaboration with new groups is welcome.