AVa

\/ \/
SHiP

Search for Hidden Particles

Material and Detector

Implementation in
FairSHIP

Annarita Buonaura
Universita di Napoli & INFN

7th SHiP Collaboration Meeting, CERN, February 10 - 12, 2016 %

OUTLINE

» Introduction
» Creating a new detector class
» The CMakelists file
» The Detector Class
» Describing a detector
» Creating the shape
» Creating the medium
» Creating and positioning the volume
» Process Hits() , GetCollection() and AddHit() methods
» The Hits class
» How to make everything work
» The LinkDef.h file
» Parameter file
» Make FairShip know about your detector
» Summary

©
=
o
4+
=
|_
=
1=
wn
[
@
Lo
1
©
—
>
(4]
c
o
>
o
©
4+
=
(1]
c
S
<

—
N
—J

Introduction

SHiP geometry environmentis mainly based on the
ROOT/TGEO package.

It is a tool for building, browsing, navigatingand visualizing
detector geometries

Particle transportis obtained by working in correlation with
simulation packages such as GEANT3, GEANT4 and FLUKA

To create a new detector you haveto implementsome classes
which will describe your detector.
To describe a detector (possiblyin a new folder of FairShip/) it
is importantto implement:

* the CMakefFile

* the detector class

e the detector MC Point class

‘©
=
o
5
l_
=
L=
(%]
=
©
L
1
©
—
>
©
c
o
>
o
©
+—
=
©
(=
(=
<<

CREATING ANEW DETECTOR
CLASS

The CMakelLists File

For a standalone detector create a new folder.
When creating a new folder (e.g: FairShip/Box) it is necessary to first define a
CMakelists file containing the names of the .cxx file in the folder.

It will create a library which includes the

source files written in the folder .

Box.cxx

Box.h
BoxContFact.cxx
BoxContFact.h
BoxLinkDef.h
BoxPoint.cxx
BoxPoint.h

(2 CMakeLists.txt) *

mox]

44144747454

set (INCLUDE_DIRECTORIES
${BASE_INCLUDE_DIRECTORIES}

${CMAKE_SOURCE_DIR}/Box
${ROOT_INCLUDE_DIR}

)

include_directories(${INCLUDE_DIRECTORIES})
include_directories(SYSTEM ${SYSTEM_INCLUDE_DIRECTORIES})

set (LINK_DIRECTORIES
${ROOT_LIBRARY_DIR}

)

link_directories(${LINK_DIRECTORIES})

Box.cxx
BoxPoint.cxx

BoxContFact. cxx

Set (HEADERS)
Set(LINKDEF BoxLinkDef.h)

Set (LIBRARY_NAME Box)
Set (DEPENDENCIES Base ShipData GeoBase ParBase Geom Cint Core)

GENERATE_LIBRARY()

(_U
=
(@]
5
|_
o
d=
(%)
=
©
L
1
©
—
>
©
c
O
>
[aa]
©
+
=
©
c
C
<

—
U
—J

The Detector Class

 Two files must be created: a .hfile anda .cxx usually with the same
name

 The .hfile (headerfile) contains declaration of:
* private/protected member of the class (NB: do not define
them here)
e functions(methods)

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

* The .cxx file contains:
* implementationofthe methods declaredinthe .h file

—
(@)}
—J

Describing a detector

* A new detectorclass can inherit from two different abstract base
classes:
* FairModule:
* Defines a geometry element which does not produce MC
points (passive detectors such as
/FairSHip/passive/ShipMuonShield.cxx)

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

* FairDetector:
* Defines a geometry element with active volumes (e.g. a
detector)
* Itis asubclassof the FairModule one which implements
extra functions called from the eventloop of the MC to
make some actions duringsimulations

—
~N
—J

Create a detector volume

The basicbricks for building-up the model are called volumes.
Volumes are put oneinside another makingan in-depth hierarchy. The
one containingall others defines the “world” of the model.

In FairShip the world has already been defined and it can be called
using:

TGeoVolume *top = gGeoManager->GetTopVolume();

To definea volume it is necessary to create media and shapes.

Both containers and contained volumes must be created before
linkingthem together: arelative transformation matrix must also be
provided.

Anyvolume has to be positioned somewhere otherwise it will not be
considered as part of the geometry.

‘©
=
o
5
l_
=
L=
(%]
=
©
L
1
©
—
>
©
c
o
>
o
©
+—
=
©
(=
(=
<<

Create a detector shape

 Each volume hasa shape.
* |t providesthedefinition ofthelocal coordinate
system of the volume.
 Anyshapehas toderive from the base
TGeoShape class.
e 20 basic(primitive) shapes are already provided:
* Boxes: TGeoBBoxclass
e Parallelepipid: TGeoPara class
 Trapezoids: TGeoTrd1 class
e Cones—TGeoConeClass
e Arbitrary 8 vertices shapes- TGeoArb8class
e Tubes—TGeoTubeClass

=
=
(@]
5
=
o
I
(%)
=
©
L
1
(]
=
>
@
(=
o
>
o
O
o+
=
(4]
c
C
<

e Compositeshapescanalsobe createdasa
result of Boolean operations between primitives

Create a detector shape (2)

e All primitives have constructors like:

TGeoXXX(const char *name, <type> paraml, <type> param?2, ...);
TGeoXXX(<type> paraml, <type> paramz2, ...);

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

 Example:
TGeoBBox(Double t fX, <«—— Half length in X
Double_t fY, <«—— HalflengthinyY
Double t fZ, <«<—— HalflengthinZz
Double_t *origin=0); <«<—— Origin of the box: (0,0,0)
by default

y
NB: The default length units are p beam -
centimetres > | I_C ' , I

Defining the media

Together with shapes, volumes need media to be created, because
materials represent the physical properties of the solid from which a
volume is made.

The TGeoMedium class defines the media, that are material with tracking
parameters needed for the transport (sensitivity flag, field flag, max field
value)

New media can be added to the geometry/media.geo.file

There can be multiple kind of definitions according to the knowledge of the
different properties of the considered medium

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

Name Number of P t A Y4 Density Relative weights

[]]

carbon 1 12.011 6.0 2.265
0 1 30. .001
0
air 3 14.01 16. 39.95 7. 8. 18. 1.205e-3 .78 .21 .01

i
/ / \

 \
=
[N

—_—

Sensitivity flag Field flag EPSIL
Maximum field

Number of Cerenkov parameters

Defining the media (2)

Name Number of components A 7 Density Number of atoms

\ \ I e\ L

\ \ N W\ N\ TN

TRDgas -3 12.011 15.994 131.29 6. 8. 54. 0.004944 1.5 3. 8.5
1 0 20. 1.0e-4

/ \\\\

Sensitivity flag Field flag \ EPSIL

Maximum field

Number of Cerenkov parameters

—
=
o
5
'_
2
d=
7
=
©
[N
1
©
L .
5
©
c
s}
=3
@
©
&
=
©
c
c
<

o . proportion by
Name ! of comp A z Density pumber of atoms
\ | /\ | A
\ | / N\ I\ | / \
Csl -2 132.9054 126.9045 55. 53. 453 1 1

1 1 20. .00001

2
Number of / 1.77 50000. 1.0 1.0003

Cerenkov
parameters 10.5 50000. 1.0 1.0003
/ / \ ~
7 B ~
Photon momentum tn ¢ refraction index for a dielectric, rindex[0])=0 for a metal [12)
absorption length in case of \

dielectric and absorption

ion effici
probabilities in case of o metal detection efficiency

Create a detector volume (2)

* Basicstrategy

Step 1: TGeoBBox *fBox = new TGeoBBox(Double_t fX,
Define the geometry Double_t fY, Double_t fZ);

—
=
o
5
'—
2
d=
7
=
©
[N
1
©
L .
=
©
c
s}
=
@
©
&
=
©
c
c
<

Step 2: InitMedium("iron");

Define the media TGeoMedium *Fe = gGeoManager->GetMedium(“iron");

Step 3:
Define the volume

TGeoVolume *fBoxVol = new TGeoVolume("volBox", fBox, Fe);

[HY
w
—_—

Positioning the volume

Before positioninga volume, its mother volume must be created
Daughter volumes must not extrude their mother shape.

Positions of daughter volumes with respect to the center of mother
volume must be known: a geometrical transformation when
positioningdaughter volumes must be provided.

Volumes in the same container must not overlap with each other

If the detector consists of a repetition of unitary cells (e.g. 10 iron
layers):
* Not create a different shapeand adifferent volume for each cell
* |tisenoughto replicatethe onesthat havebeen already created

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

 \
(Y
B

—_—

Positioning the volume (2)

Example: Box positioned in top volume

TGeoVolume *top = gGeoManager—->GetTopVolume(); «— Call top volume

TGeoBBox *fBox = new TGeoBBox(Double_t fX, Double_t fY, Double_t fZ); ¥ «——— Define Box

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

InitMedium("iron"); _ . |<7 Define Box material
TGeoMedium *Fe = gGeoManager->GetMedium(“iron");
TGeoVolume *fBoxVol = new TGeoVolume("volBox", fBox, Fe); — Define Box volume
TGeoTranslation *fT = new TGeoTranslation(fTx, fTy, fTz); Position of the t. topvolume
top -> AddNode(fBoxVol, 1, fT); «—— Position the | top volume

X Mother T ™~ TGeoTranslation

volume Number of replica

TGeoBBox *fScint = new TGeoBBox (Double_t fX, Double_t fY, Double_t fScintZ);
InitMedium(“scint”);
TGeoMedium *Fe = gGeoManager->GetMedium(“Scintillator");
TGeoVolume *fScintVol = new TGeoVolume("volScint", fScint, scint);
for(Int_t n =0; n< nReplica; n++){
TGeoTranslation *t=new TGeoTransIation(0,0,-fZ+n*(fSciKZ+O. 1)]fScint/2);

fBox -> AddNode(VBox, n, t); _
} Translations along x,y,z w.r.t. center of mother volume

Number of replica

[HY
Ul
| S—

ProcessHits()

Bool_t Box::ProcessHits(FairVolume* vol)
{
/** This method is called from the MC stepping */
//Set parameters at entrance of volume. Reset Eloss.

if (gMC->IsTrackEntering()) {
fELoss = 0.;
fTime = gMC->TrackTime() * 1.0e09;
flLength = gMC->TrackLength(Q);
gMC->TrackPosition(fPos);
gMC->TrackMomentum(fMom) ;

=
=
(@]
5
=
o
I
(%)
=
©
L
1
(]
=
>
@
(=
o
>
o
(4]
o+
=
(4]
c
C
<

} .

// Sum energy loss for all steps in the active volume if (fEloss == @.) { return kFALSE; }

fELoss += gMC->Edep(); TParticle* p=gMC->GetStack()->GetCurrentTrack();

Int_t pdgCode = p->GetPdgCode();

// Create BoxPoint at exit of active volume 1L tzVector P

if (gMC->IsTrackExiting() Il OPENTZVEctar Fos,
gMC->IsTrackStop() " gMC->TrackPosition(Pos);
wC'>ISTf‘aCkD:lsappeaf‘ed()) { Double_t xmean = (fPOS.X()+POS.X())/2. ’

Double_t ymean = (fPos.Y()+Pos.Y(D)/2. ;

fTrackID = gMC->GetStack()->GetCurrentTrackNumber(); Double_t zmean = (fPos.Z()+Pos. 203972, -
- . . . 3

fVolumeID = vol->getMCid();
Int_t detID=0;

gMC->CurrentVol ID(det1D); AddHit(fTrackID,fVolumeID, TVector3(xmean, ymean, zmean),

TVector3(fMom.Px(), fMom.Py(D, fMom.Pz()), fTime, flength,

if (fVolumeID == detID) { fELoss, pdgCode);
’ ’

return kTRUE; }

fVolumeID = detID; // Increment number of muon det points in TParticle

ShipStack* stack = (ShipStack*) gMC->GetStack();
stack->AddPoint(ktauBox);

gGeoManager->PrintOverlaps();

}
return kTRUE;

[HY
()]
—_—

ProcessHits()

©
Bool_t Box::ProcessHits(FairVolume* vol) E
{ 5
/** This method is called from the MC stepping */ '5_
//Set parameters at entrance of volume. Reset ELoss. Evaluates mean =
if (f9“c“>IST";CkE"te"i"90) { position of hits in the ¢
Eloss = 0.; . .
fTime = w&_>'|’r-ack'rime() * 1.0e09; Gets the pdgCode associatedto sensitive volume &
flLength = gMC->TrackLength(Q); the Tparticle object ©
gMC->TrackPosition(fPos); =
gMC->TrackMomentum(fMom) ; S
} : S
// Sum energy loss for all steps in the active volume if (f_EL°55 == 0.) { "e% kFALSE; } =]
fELoss += gMC->Edep(); TParticle* p=gMC->GetStacR()->GetCurrgntTrack(); i)
Int_t pdgCode = p->GetPdgCode(); 'g
// Create BoxPoint at exit of active volume) =
if (gMC->IsTrackExiting() 11 TLorentzVector Pos; <
gMC->IsTrackStop() I gMC->TrackPosition(Pos);
gAC->IsTr'ackDisappear‘ed()) { Double_t xmean = (fPos.X()+Pos.X())/2. ;
fTrackID = gMC->GetStack()->GetCurrentTrackNumber(); Double_t ymean = (fPos.Y()+Pos.Y(3)/2. ;
fVolumeID = V01->getMCid(); Double_t zmean = (‘FPOS.Z()+POS.Z())/2. H
Int_t detID=0;
PG> CurrentVol I aetID); AddHit(fTrackID,fVolumeID, TVector3(xmean, ymean, zmean),
f (fVolumeID == detID) { TVector3(fMom.Px(), fMom.Py(), fMom.Pz()), fTime, flength,
return KTRUE; } fELoss, pdgCode);
fVolumeID = detID; // Increment number of muon det points in TParticle
. . ShipStack* stack = (ShipStack*) gMC->GetStack();
gGeoManager‘->Pr'lqt0ver‘laps() ’ stack->AddPoint(ktauBox);
Checks if there are , return KTRUE;
Gets the ID of the overlapping volumes 7

volume where the hit

Adding hits to save
was released

Saving the hits: GetCollection()
& AddHit()

TClonesArray* Box::GetCollection(Int_t iColl) const
{
if (iColl == @) { return fBoxPointCollection; }
else { return NULL; }
}

=
=
(@]
5
=
o
I
(%)
=
©
L
1
(]
=
>
@
(=
o
>
o
O
o+
=
(4]
c
C
<

BoxPoint* Box::AddHit(Int_t trackID,Int_t detID,
TVector3 pos, TVector3 mom,
Double_t time, Double_t length,]
Double_t eloss, Int_t pdgCode)

TClonesArray& clref = *fBoxPointCollection;
Int_t size = clref.GetEntriesFast();
return new(clref[size]) BoxPoint(trackID,detID, pos, mom,
time, length, eloss, pdgCode);

[HY
(0¢]
| S—

The hits class

e Usually created with a name ***Point
e |tinherits from the FairMCPoint class

 As for the detector class:

e _.hfile:

* Point constructor with/without arguments
e trackID = Index of MC track
 detiD=DetectorID
* pos=Coordinates at the center of the active volume [cm]
* mom= Momentum of trackat entrance [GeV]
* tof =Time since event start [ns]
* length = Track length since creation [cm]
e eloss=Energy deposit [GeV]
 pdgcode=Pdg Code of the track
* Definition of functions acting on the class

 Example: Int_t PdgCode() const {return fPdgCode;}

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

[HY
o)
| S—

o .cxxfile:
e ... of fuctions defined in .h file

HOW TO MAKE EVERYTHING
WORK ...

Parameter File

In order to study different detector designs, basic geometry parameters should be
given by instantiation of the geometry objects, not hardcoded in C++ class.
Basic parameters are in geometry/geometry_config.py

Example
c.Box = AttrDict(z=0*u.cm)
c.Box.BX=3*u.m;
c.Box.BY =3*u.m;
c.Box.BZ=3*u.m;

—
=
(@]
5
'_
2
=
)
=
©
[N
1
©
—
=
©
c
o
=
)
@
S
=
©
c
c
<<

Geometry objects are created by python/shipDet_conf.py and declared to the
run manager FairRunSim()

Example
Box = ROOT.Box("Box",ship_geo.Box.BX, ship_geo.Box.BY,
ship_geo.Box.BZ, ROOT.KTRUE)
run.AddModule(Box)

—
N
=

—/

The LinkDetf.h file

In the folder of your detector.

The ROOTCINT program generates the Streamer(), TBuffer &operator>>() and
ShowMembers() methods for ROOT classes as well as the CINT dictionaries
needed in order to get access to ones classes via the interpreter

The LinkDef file tells ROOTCINT for which classes the method interface stubs

should be generated.

fifdef __CINT__

fpragma link off all globals;
tpragma link off all classes;

¢ i i 5 . .
pragma link off all functions; The "+" at the end (ACLIC) invokes
tpragma link C++ class Box+; |_— the diction-ary generator and all the
fpragma link C++ class BoxPoint+;‘/ rest (essential)

tpragma link C++ class BoxContFact+;

tendif

(_U
=
(@]
5
|_
o
d=
(%)
=
©
L
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

—
N
N

—J

Make FairSHIP know about
your detector

* FairShip/CMakelists.txt
* To make the FairShip software read the new folder, it is important to insert the
title of the folder among those contained in the general CMakelLists.txt file

» shipdata/ShipDetectorlList.h
* Inthe constructor of the Box class a unique identifier is given to the detector
that has to be added to the list of the other identifiers :

‘©
=
O
+=
>
—
Q.
G
(%)
=
©
[N
1
©
—
>
©
c
o
>
o
©
+
=
©
c
c
<<

Box: :Box(const char* namezrgnnsngouble_t BX, const Double_t BY, const Double_t BZ, Bool_t Active,const char* Title)
kBox)

: FairDetector(name, true -
Box.cxx !

#ifndef éh{bbéiectorList_H
#define ShipDetectorList_H 1

ShipDetectorList.b

-
L

—
N
w

—J

// KSTOPHERE is needed for iteration over the_enum. All detectors have to be put before.
enum DetectorId {kVETO, ktauRpc, ktauTarget“(Str‘aw, kecal, khcal, kMuon ,kTRSTATION};

#endif

Summarizing

 To create a new detector folder:

Add your folder in the FairShip directory

Modify the FairShip/CMakelists.txt adding the name of your folder after endif
(no fair root found) with command add_subdirectory (folder name)

In Shipdata/ShipDetectorList.h add the unique identifier you give to your
detector (the same you will need to use in one of the constructor of your
detector class.

* |Inthe new folder:

Create a CMakelists.txt file and a ***LinkDef.h file

If detector is active create the ***Point.h (.cxx) files (otherwise skip)

Create the detector class (YourDetector.h(.cxx)) and if the detector is passive do
not use functions read hits (see for example FairShip/passive/ShipMagnet.h)
Check if the media of which your detector is made is already been created in
geometry/media.geo (otherwise create using info on the slides)

Add the parameters of your detector in the geometry/geometry config.py file
Create the geometry object corresponding to your detector by defining it in
python/shipDet _conf.py

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

—
N
D

—

Summarizing

e This is just a very short introduction on the possibilities given by FairROOT to
create new detector geometries.

©
=
O
5
=
=
1<
(%)
=
©
(N
1
©
—
=)
©
c
o
=)
o
4]
i
=
©
c
c
<

* The best wayto learn is to try, try and try, also by taking a look at what other
people have done.

e For further information on the geometry package please refer to the FairROOT
documentation

—
N
Ul

—J

|eoin] diysJied - eineuong ejlieuuy

\
(¥o)
N

—

BACK - UP SLIDES

[InitMedium Function

In FairShip media are read by the geometry/media.geo file throughout the
private function InitMedium:

Int_t XXX:InitMedium(const char* name)

{

static FairGeolLoader *geolLoad=FairGeolLoader::Instance();
static FairGeolnterface *geoFace=geolLoad->getGeolnterface();
static FairGeoMedia *media=geoFace->getMedia();
static FairGeoBuilder *geoBuild=geolLoad->getGeoBuilder();
FairGeoMedium *ShipMedium=media->getMedium(name);
if (!ShipMedium)
{ Fatal("InitMedium","Material %s not defined in media file.", name);
return-1111;}
TGeoMedium* medium=gGeoManager->GetMedium(name);
if (medium!=NULL)
return ShipMedium->getMediumIndex();
return geoBuild->createMedium(ShipMedium);

(_U
=
(@]
5
|_
o
d=
(%)
=
©
L
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

—
N
(0¢]

—

Magnetic Field

The value of the magnetic field can be defined as a private member of the
detector class.

Example:

TGeoUniformMagField *magField = new TGeoUniformMagField(0.,-MagneticField,0.);
fBoxVol->SetField(magField);

Note: This isvalid only in FairShip.
Necessary to manipulate G4 geometry to enable magnetic field in active shielding.

Private fix in run_simScript.py to make it work

#manipulate G4 geometry to enable magnetic field in active shielding, VMC can't do it.
import geomGeant4
geomGeantd4.setMagnetField() # ('"dump’) for printout of mag fields

(_U
=
(@]
5
|_
o
NG
(%)
=
©
[N
1
©
—
>
©
c
o
>
[aa]
©
+
=
©
c
C
<

—
N
o}

—J

The Hits class (example)

class BoxPoint : public FairM(CPoint
{

public:

/** Default constructor **/
BoxPoint();

/** Constructor with arguments
*@param trackID Index of M(Track
*@param detID Detector ID
*@param pos Ccoordinates at entrance to active volume [cm]
*@aram mom Momentum of track at entrance [GeV]
*@param tof Time since event start [ns]
*@param length Track length since creation [cm]
*@param eloss Energy deposit [GeV]
'./

=
=
(@]
5
=
o
I
(%)
=
©
L
1
(]
=
>
@
(=
o
>
o
O
o+
=
(4]
c
C
<

BoxPoint(Int_t trackID, Int_t detID, TVector3 pos, TVector3 mom,
Double_t tof, Double_t length, Double_t eloss, Int_t pdgCode);

/** Destructor **/
virtual ~BoxPoint();

/** Qutput to screen **/
virtual void Print(const Option_t* opt) const;
Int_t PdgCode() const {return fPdgCode;}

private:

Int_t fPdgCode;
/** Copy constructor **/

BoxPoint(const BoxPoint& point);
BoxPoint operator=(const BoxPoint& point);

ClassDef(BoxPoint,1)
};

The Detector Class (2)

class Box : public FairDetector

public:
Box(const char* name, const Double_t BX, const Double_t BY, const Double_t BZ, Bool_t Active, const char*® Title = "Box");

Box();
virtual ~Box();

/** Create the detector geometry */
void ConstructGeometry();

/** Initialization of the detector is done here */
virtual void Initialize();

/** Method called for each step during simulation (see FairMCApplication::Stepping()) */

virtual Bool_t ProcessHits(FairVolume® v=0);

/** Registers the produced collections in FAIRRootManager. */
virtual void Register();

/** Gets the produced collections */
virtual TClonesArray* GetCollection(Int_t iColl) const ;

/** has to be called after each event to reset the containers */
virtual void Reset();

/** How to add your own point of type BoxPoint to the clones array */

BoxPoint* AddHit(Int_t trackID, Int_t detID, TVector3 pos, TVector3 mom,
Double_t time, Double_t length, Double_t eloss, Int_t pdgCode);

virtual void CopyClones(TClonesArray®* cll, TClonesArray® cl2 , Int_t offset) {;}

virtual void SetSpecialPhysicsCuts(Q) {;}
virtual void EndOfEvent();

virtual void FinishPrimary() {;}

virtual void FinishRun(Q) {;}

virtual void BeginPrimary() {;}

virtual void PostTrack() {;}

virtual void PreTrack() {;}

virtual void BeginEvent() {;}

Box.b

Box(const Box&);
Box& operator=(const Box&);

ClassDef(Box,1)

private:

Int_t fTrackID;
Int_t fVolumelID;
TLorentzVector fPos;
TLorentzVector fMom;
Double32_t fTime;
Double32_t fLength;
Double32_t fELoss;

/** container for data points */
TClonesArray* fBoxPointCollection;

protected:

Double_t BoxX;
Double_t BoxY;

Double_t BoxZ;

Int_t InitMedium(const char® name);

};

/7"
/7"
/7"
/7"
/7
/7"
/7!

/** Track information to be stored until the track leaves the active volume.

track index

volume id

position at entrance
momentum at entrance
time

length

energy loss

*/

=
=
(@]
5
=
o
I
(%)
=
©
L
1
(]
=
>
@
(=
o
>
[aa]
(4]
o+
-
(4]
c
C
<

