Tutorial: change of schedule

There was a change in today's schedule, due to overlapping with the LIGO/VIRGO announcements.

New timetable:

- **Today: 15:00 to 16:30** (room 13-2-005)
 - Introduction (**Thomas**)
 - Introduction to HNL simulation and analysis (**Elena**)
 - How to implement detectors and material (**Annarita**)
- **Tomorrow: 8:00 to 9:00** (Filtration Plant)
 - (Real) hands-on session: creating a detector (**Iaroslava**)

Please attend the early-morning Friday session, it will be the most useful towards the preparation of the CDR!
Introduction

- Basics
- Software Overview
- Structure
Basics

Mailing list

- ship-software@cern.ch (SHIP Collaboration mailing list dedicated to software)
- Archive: https://groups.cern.ch/group/ship-software/default.aspx

Web pages

- https://twiki.cern.ch/twiki/bin/view/Ship/ShipSoftware

Instructions for working at CERN

- http://ship.web.cern.ch/ship/FairShip/computingAtCERN.html

Software repositories

- https://github.com/ShipSoft
 - https://github.com/ShipSoft/FairSoft
 - https://github.com/ShipSoft/FairRoot
 - https://github.com/ShipSoft/FairShip
- Pre-installation on afs:
 - /afs/cern.ch/sw/ShipSoft

Data repository

- EOS: /eos/ship/data, quota 10TB
- Documentation:
 - https://git.cern.ch/web/shipdocs.git/tree/HEAD:/Public/FairShip
 - https://trufship@git.cern.ch/reps/shipdocs/ (not updated since summer’15, sorry.)
Software Overview

3 Pillars

- **FairSoft**
 - Underlying software: root, Pythia, Geant, ...

- **FairRoot**
 - Light weight Simulation, Reconstruction, Analysis Framework

- **FairShip**
 - Detector, Simulation, Reconstruction, Analysis

C++

FairSoft's C++ underpinnings

FairRoot's C++ capabilities

FairShip's C++ and Python for configuring of C++ objects and execution of non-CPU critical algorithms, flexible, user friendly!

- https://fairroot.gsi.de/
- [September 2014 Tutorial](#)
Software Distribution

GIT
- Widely used distributed version control system
- Every Git working directory is a full-fledged repository with complete history and full version-tracking capabilities
- Central hub: https://github.com/ShipSoft
- Main commands:
 - `git clone https://github.com/ShipSoft/FairShip.git`: create local copy of FairShip
- In FairShip directory
 - `git pull`: fetch all updates from central hub
 - `git checkout c71af77179224b6d0f7393c69ab257df8b50722c`: specific version
 - If you want to know more: https://github.com/ShipSoft/FairShip/wiki/Git-Tutorial-for-SHiP

Software development
- For the moment, one person (me) doing commits and push
- If you have any changes, additions, etc., please present it in the ShipSoft meeting and send me the code.
- If this turns out to be not maintainable, people will have to learn how to work with Git in more details.

Thomas Ruf Ship Software Tutorial February 2016
Installation

- Same procedure for FairSoft, FairRoot and FairShip
 - git clone https://github.com/ShipSoft/XXX.git
 - cd XXX
 - ./configure.sh
 - Need two env variables for boot strapping: SIMPATH and FAIRROOTPATH

- On lxplus, profit from installed FairSoft, FairRoot:
 - export SHIPSOFT=/afs/cern.ch/ship/sw/ShipSoft
 - export SIMPATH=${SHIPSOFT}/FairSoftInst
 - export FAIRROOTPATH=${SHIPSOFT}/FairRootInst

- After installation of FairShip, to setup the environment, use:
 - source $FAIRSHIPRUN/config.sh ($FAIRSHIPRUN pointing to your FairShip/../FairShipRun

- Changing existing code, recompilation
 - cd $FAIRSHIPRUN ; make

- Adding new c++ code
 - For advanced users: cd $FAIRSHIPRUN ; cmake ; make
 - To be on safe side: rm –rf $FAIRSHIPRUN ; ./configure.sh

Thomas Ruf Ship Software Tutorial February 2016
Structure

Geometry

- **Subdetector directories and passive materials**
 - `/nutaudet`, `/veto`, `/strawtubes`, `/ecal`, `/hcal`, `/muon`, `/passive`

- **Also contain**
 - Definition which volumes are sensitive
 - What information to store for MC particles entering the volume, momentum, entry/exit points

Global data objects

- **shipdata directory**
 - `shipstack`, work space for Geant
 - `ShipMCTrack`, MC particle object of FairShip

MC Generators

- **shipgen directory**

- **Implemented use cases:**
 - HNL signal from charm (beauty): `HNLPythia8Generator`
 - Muon background: `MuonBackGenerator`
 - Muon inelastic interactions: `MuDISGenerator`
 - Neutrino inelastic interactions: `GenieGenerator`, `NuageGenerator`
 - Cosmic background: `CosmicsGenerator`
Structure cont.

- **Configuration**
 - **python directory**
 - shipDet_conf.py, DecaySelection.conf
 - Also some other useful modules: shipunits.py, ShipStyle.py
 - **geometry directory**
 - Geometry parameters for ecal and hcal
 - List of materials, media.geo

- **Execution**
 - **macro directory**
 - **Scripts to run simulation, reconstruction, analysis and eventdisplay**
 - **Accept command line arguments for different use cases**
 - run_simScript.py simulation
 - Philosophy: one script for many use cases, instead of many scripts each for one use case.
 - ShipReco.py reconstruction
 - ShipAna.py template for analysis
 - eventdisplay.py visualization of detector geometry and event data
 - **genfit directory**
 - External package for track fitting, extrapolation of track states through magnetic field and material
Not covered today

- **Production and analysis on SkyGrid**
 - See presentation by Alexander Baranov (Sasha) November 2015
 - Requires a git repository of your code if different from official version
 - The command line to execute
 - Send request to skygrid-users@cern.ch

- **FairSoft/FairRoot/FairShip can easily be installed on your laptop/desktop**
 - With linux operating system
 - Or using a Virtual Machine
 - VMWare (my solution), https://www.vmware.com/go/downloadplayer/
 - A local installation is preferred solution for running event display
Not covered today, cont.

- **Event Display**
 - Very useful for getting an idea about detector geometry, how the particles traverse the setup
 - For making PR pictures
 - `python -i $FAIRSHIP/macro eventdisplay.py -f ship..._rec.root -g geofile...root`

![Event Display GUI](image)