

Calorimeters' system Status and Plans

M. Villa University and INFN Bologna

Bologna, 11/02/2016

Outline

- Status
 - Quick review of current status of ECAL&HCAL
 - Design; software
 - Performances and costs
- Plans
 - Software updates
 - ECAL
 - Cost optimization;
 - Sensor tests
 - HCAL
 - Study of the structure, of the modules
 - Future Beam tests \rightarrow see next talk; Ivan Korolko
 - Front-end and DAQ Electronics
 - Auxiliary electronics
 - Mechanics
- Summary

ECAL in TP

Almost elliptical shape 5 m x 10 m; 2876 Shashlik modules, 2x2 cells/modules, width=6 cm 11504 independent readout channels

- Radiation length 17 mm
- 36 mm
- Radiation thickness $25 X_0$
- 1.5mm Scintillator thickness
- 0.8mm
- Energy resolution 6%/JE 1%

60x60 mm²

Breakdown of ECAL costs

- Driving numbers: 2876 Modules, 11504 cells
 Module cost 1500€/each 4.3 M€
- Infrastructure
 0.2 M€
- Sensors (PMT) 3.0 M€
 - PMT+Base+CW/HV+cables 260€/each
 - SiPM+cables+LV embed 130 €/each
 - APD+cables+LV embed 130 €/each
- Readout electronics (90€/ch+4000€)
 1.8 M€
- Racks and slow control
- Grand total 9.4M€

0.1 M€

HCAL in TP

HCAL performances

Rejection factor for $\varepsilon_{\mu} = 95\%$		
Energy, GeV	E+H1+H2	
1.0	22	

Ener 57, 60 7	
1.0	23
1.5	32
2.0	50
2.7	120
3.0	160
5.0	210
2/07/10-0	250

- ✓ Standard ECAL
- ✓ HCAL:18 (Hcal1) and 48 layers (Hcal2)
- The geometry maximise the capability for π/μ discrimination at low momentum
- ✓ Common likelihood based on information from Ecal, Hcal1 and Hcal2 (independent)
- ✓ Cut on likelihood to ensure 95% efficiency for muons
- ✓ Great for particles with E>2.5 GeV
- ✓ Still place for improvement

Breakdown of HCAL costs

- Driving numbers: 1512 Modules, 1512 cells
- Module cost 2000€/each 3.0 M€
- Infrastructure
- Sensors (PMT)
 - PMT+Base+CW/HV+cables 260€/each
 - SiPM+cables+LV embed 130 €/each
 - APD+cables+LV embed 130 €/each
- Readout electronics (90€/ch+4000€)
- Racks and slow control

0.2 M€ 0.1 M€

0.7 M€

0.4 M€

Grand total 4.4M€

Plans

- Plans
 - Software updates
 - -ECAL
 - Cost optimization
 - Sensor & RO tests
 - HCAL;
 - study of the structure of the modules
 - Future Beam tests \rightarrow see next talk; Ivan
 - Front-end and DAQ Electronics
 - Auxiliary electronics
 - Mechanics/infrastructure

Plans for the software

- ECAL/HCAL Cluster reco in place;
- ECAL: Finalise cluster feature extraction
 - Zbest, Xbest, Ybest, Ecalib, Asymmetry
 - Add Neutral/Charged info;
 - Track Particle Identification likelihoods on ECAL
- HCAL: study other options for geometry (tile HCAL?)
 - Track Particle Identification likelihoods on HCAL (in place; to be tuned with MUON)
 - Optimize PID system (ECAL+HCAL+MUON)
- Physics studies with latest reco code

ECAL cost optimization

- Ecal costs already optimized for acceptance and granularity (at almost fixed performances)
- Studies are ongoing for different sensors
 - APDs under test:
 - MPPC & MAPD

3.0 M€→1.5 M€

Sensors and readout tests

Processing board

- Sensors will be tested on lab mainly for linearity and dynamic range;
- ECAL Shashlik modules + sensors will be tested on beams

HCAL

- Which technology
 - Shashlik, Tile HCAL, or other
- Which geometry
 - One station, two stations, three stations?
 - Widths? Granularities?
 - Performances on muons with the MUON detector
- Beam tests \rightarrow see Ivan

Front end and DAQ

- Signals will be digitized by FADCs and locally processed by FPGA to provide:
 - Digitized energy information (amplitude, integral, ToT) Processing board
 - Signal time tagging (≈ 1 ns for event definition)
 - Digital signal shape analysis for noise/background rejection
- A single board equipped with FPGA, SoC will:
 - read 32/64 channels
 - perform monitoring functions on data
 - ship out event data
- Looking for a low cost FADC solution that will allow good signal timing and ease system integration;
- HCAL/ECAL synergies looked for to reduce costs

Auxiliary electronics ECAL/HCAL

- There will be a lot of auxiliary electronics whose details will not have impact on the performance:
 - Power supply for sensors (HV, LV or...)
 - Monitoring system for power supply
 - LED calibration systems
 - Clock, sync, beam, etc signal distribution (TTC?)
 - Data collection for DAQ/switches
- Details on these systems will be worked out at a later stage (exp-wide?) but are needed before the CDR
 - (several examples to look at in LHCb, Hera-B, ATLAS, CMS)

Infrastructure/mechanics

- Not seen as critical
 - But capability to build a 10 m high calo needs to be checked!

(highest pressure 6 atm on lowest modules)

 Work is needed in this area, but can start once the geometry is almost frozen

Summary

- There are several areas to work for a "CDR" level of Calo descriptions.
- New collaborators wishing to contribute in any calo area are welcomed
 - Software/reconstruction
 - Detector design & further optimization
 - Electronics
 - Mechanics
 - Lab and beam tests

Please do not be shy!

11/02/2016

11/02/2016