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RAD



What do these applications have in common?

The study of the interaction of radiation (e.g. 
particles, x-rays) with matter has applications in 
several scientific areas:

• Basic research (e.g. at accelerators to 
discover new phenomena)

• Medical imaging (e.g. x-rays)

• Medical treatment (e.g. radio-therapy)

• Industrial (e.g. energy production, shielding)

Essential tools in these fields are simulation 
programs. The most precise are based on Monte 
Carlo techniques

Several codes exists: Geant4 is one of them, the 
most widely adopted

Image courtesy of CERN 
http://cern.ch



Physics Requirements

HEP calorimeter

Medical  linac
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CERN Experiments alone:
• Large university and computing centers
• at least 35x106 CPU hours / year dedicated to LHC/Geant4

Medical MC simulations:
• 7 CPU hours for a single neck/head radiation treatment 

validation
• 20 Millions of treatment planning per year in US only
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Overview

Part 1: Introduction
– Historical Notes
– Basics of Monte Carlo Method
– Basics of Monte Carlo for Radiation Transport
– Speedup of Simulations with variance reduction techniques

Part 2: Detector Simulations
– General Structure of a Detector Simulation package
– Geometry “ingredients”
– Physics “ingredients”



Part 1



Historical Notes: Monte Carlo 
Method
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Monte Carlo method : definition

• The Monte Carlo method is a stochastic method for 
numerical integration.
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Buffon’s needle
• Buffon's Needle is one of the oldest problems in the field of 

geometrical probability. It was first stated in 1777. It involves 
dropping a needle on a lined sheet of paper and determining the 
probability of the needle crossing one of the lines on the sheet. 
The remarkable result is that the probability is directly related to 
the value of π.

• The needle in the picture misses the line. The needle will hit the 
line if x ≤ Lsin(θ). Assuming L ≤ D, how often will this occur?

• By sampling Pcut one can estimate p.

Distance 
between 
lines = D

Length of the 
needle = L

x

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Buffon’s needle

Number of drops (n) = 1
Number of hits (h) = 1
Pcut = h/n = 1
π = (2 L / D) * ( n / h ) 
    = 2 / Pcut ~ 2
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Buffon’s needle

Number of drops (n) = 10
Number of hits (h) = 6
Pcut = h/n = 0.6

 = (2 L / D) * ( n / h ) 
    = 2 / Pcut ~ 3.33333…
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Buffon’s needle

Number of drops (n) = 100
Number of hits (h) = 65
Pcut = h/n = 0.65

 = (2 L / D) * ( n / h ) 
= 2 / Pcut ~ 3.0769231
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Buffon’s needle

Number of drops (n) = 1000
Number of hits (h) = 640
Pcut = h/n = 0.64

 = (2 L / D) * ( n / h ) 
= 2 / Pcut ~ 3.125
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Buffon’s needle

Pcut = h/n = 0.318310… ➡ = (2 L / D) * ( n / h ) = 2 / Pcut ~ 3.14159…
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Laplace’s method of calculating π (1886)

Area of the square = 4
Area of the circle = 

Probability of random points 
inside the circle =  / 4

Random points : N
Random points inside circle : Nc

 ~ 4 Nc / N
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Monte Carlo methods for radiation transport : brief history

• Fermi (1930): random method to calculate the properties of the 
newly discovered neutron

• Manhattan project (40’s): simulations during the initial 
development of thermonuclear weapons. Von Neumann and 
Ulam coin the term “Monte Carlo”

• Field growth with the availability of digital computers
• Berger (1963): first complete coupled electron-photon transport 

code that became known as ETRAN
• Exponential growth since the 1980’s
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Pioneers of the Monte Carlo simulation method
• What is not so well known is that the Italian physicist Enrico 

Fermi (1901-1954), in the early 1930s, used statistical 
sampling methods, before the name Monte Carlo had been 
coined, in his studies of the slowing down of neutrons. 

• According to Emilio Segré, Fermi’s student and collaborator, 
Fermi wowed his Roman colleagues with his uncannily 
accurate predictions of their experimental results, which, 
unknown to them, were obtained by statistical sampling 
methods. The fact that Fermi had no computers to generate 
his random numbers and had to do his calculations with 
mechanical devices or even in his head, makes his 
accomplishments all the more remarkable. 

• However, Fermi never published the results of these Monte 
Carlo calculations and, as a consequence, he often is 
neglected in the historical record of Monte Carlo.
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Pioneers of the Monte Carlo simulation method
Stanislaw Ulam (1909-1984) is a Polish 
mathematician who participated in the 
Manhattan Project and proposed the Teller–
Ulam design of thermonuclear weapons. While 
in Los Alamos, he suggested the Monte Carlo 
method for evaluating complicated 
mathematical integrals that arise in the theory 
of nuclear chain reactions (not knowing that 
Enrico Fermi and others had used a similar 
method earlier). This suggestion led to the more 
systematic development of Monte Carlo by Von 
Neumann, Metropolis, and others.
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Pioneers of the Monte Carlo simulation method

John Von Neumann (1903-1957) was 
taken by the idea of doing statistical 
sampling using newly developed 
electronic computing techniques. The 
approach seemed to him to be 
especially suitable for exploring 
behavior of neutron chain reactions in 
fission devices. In particular, neutron 
multiplication rates could be estimated 
and used to predict the explosive 
behavior of the various fission weapons 
then being developed. In March of 
1947, he wrote about this to Robert 
Richtmyer, at that time the Theoretical 
Division Leader at Los Alamos.
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Pioneers of the Monte Carlo simulation method
A team headed by Nicholas Metropolis 
(1915-1999) carried out the first actual 
Monte Carlo calculations on the ENIAC 
computer (the world’s first electronic 
digital computer, built at the University 
of Pennsylvania) in 1948. The 
Metropolis algorithm, first described in 
a 1953 paper by Metropolis, A. 
Rosenbluth, M. Rosenbluth, A. Teller, 
and Edward Teller, was cited in 
Computing in Science and Engineering 
as being among the top 10 algorithms 
having the "greatest influence on the 
development and practice of science 
and engineering in the 20th century."



Basis of MC method
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Probability Density Function (PDF) - 1
• A variable is considered random (also called stochastic) if its value cannot be specified in advance of 

observing it.
– Let x be a single continuous random variable defined over some interval. The interval can be 

finite or infinite. 
• The value of x on any observation cannot be specified in advance because the variable is random. 

Nevertheless, it is possible to talk in terms of probabilities. 
– The notation Prob{xi ≤ X} represents the probability that an observed value xi will be less than or 

equal to some specified value X. More generally, Prob{E} is used to represent the probability of 
an event E.

• A Probability Density Function (PDF) of a single stochastic variable is a function that has the 
following three properties: 
1) it is defined on an interval [a, b]
2) it is non-negative on that interval, although it can be zero for some x  [∈ a, b]
3) it is normalized such that

• Here, a and b represent real numbers or infinite limits (i.e., a → −∞ and/or b → ∞).
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Probability Density Function (PDF) - 2
• A PDF f (x) is a density function, i.e., it specifies the probability per unit of x, 

so that f (x) has units that are the inverse of the units of x. 
• For a continuous random variable, f (x) is not the probability of obtaining x. 

– There are infinitely many values that x can assume and the probability of 
obtaining a single specific value is zero. 

• Rather, the quantity f (x) dx is the probability that a random sample xi will 
assume a value within x and x+dx. 
– Often, this is stated in the form

f (x) = Prob{ x < xi < x+dx }
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Cumulative Distribution Function (CDF)
• The integral defined by

where f (x) is a PDF over the interval [a, b], is called the Cumulative 
Distribution Function (CDF) of f. 

• A CDF has the following properties:
1) F(a) = 0., F(b) = 1.
2) F(x) is monotone increasing, as f(x) is always non-negative.

• The CDF is a direct measure of probability. The value F(xi) represents the 
probability that a random sample of the stochastic variable x will assume a 
value between a and xi, i.e., Prob{a ≤ x ≤ xi} = F(xi). 

• More generally,
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Some example distributions – Uniform PDF

The uniform (rectangular) PDF on the interval [a, b] and its CDF are given by
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Some example distributions – Exponential PDF

The exponential PDF on the interval [0, ∞] and its CDF are given by
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Some example distributions – Gaussian PDF

The Gaussian PDF on the interval [-∞, ∞] and its CDF are given by
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Acceptance-rejection method
• If the two numbers xi and yi are selected randomly 

from the range and domain, respectively, of the 
function f, then each pair of numbers represents a 
point in the function’s coordinate plane (x, y).

• When yi > f(xi) the point lies above the curve for 
f(x), and xi is rejected; when yi ≤ f(xi) the points 
lies on or below the curve, and xi is accepted.

• Thus, the fraction of the accepted points is equal 
to the fraction of the area below the curve.

• This technique, first proposed by John Von 
Neumann, is also known as the acceptance-
rejection method of generating random numbers 
for arbitrary Probability Density Function (PDF).
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Random number generators (RNG)
• At the core of all Monte Carlo calculations is some mechanism to produce a long sequence of 

random numbers ri that are uniformly distributed over the open interval [0,1). However, digital 
computers, by design, are incapable of producing random results. 

• A true random sequence could, in principle, be obtained by coupling to our computer some 
external device that would produce a truly random signal. For example, we could use the time 
interval between two successive clicks of a Geiger counter placed near a radioactive source or 
use the “white noise” in some electronic circuit to provide truly random numbers.

• However, use of such a random number generator would not be practical! 
– First, the feasibility of having to couple some external device that generates a random signal 

to every computer we want to use for Monte Carlo calculations would be impractical. 
– But more important would be the impossibility of writing and debugging a Monte Carlo 

code if, on every run, a different sequence of random numbers were used. What is needed 
is a sequence of random numbers that is the same every time the program is run so that 
code errors can be found and so that the same results are produced when the same code is 
run on different computers.
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Pseudo-random number generator
An alternative to producing the same sequence of random numbers each time a program is run is to 
use a pseudo-random number generator. Such a generator is a deterministic algorithm that, given 
the previous numbers (usually just the last number) in the sequence, the next number can be 
efficiently calculated: 

– Xn+1=f(Xn,Xn-1,Xn-2,…,X0) 
– X0 is usually called “seed” 

Many pseudo-random number generators have been proposed and used over the years in a wide 
variety of Monte Carlo work. Designing better random number generators (the term “pseudo” is 
sometimes dropped from now on) is still an active area of research.

E.g. Mersenne Twister method (M. Matsumoto et al., 1998)
Fundamental ingredient of computing cryptography (e.g. financial transactions)

There have been many highly deficient random number generators used in many studies. 
When you embark on Monte Carlo investigations, be well aware of the pedigree of the random number generator 

you are using. 
Even more important, don’t alter your random number generator unless you are very confident your changes are 

an improvement. The construction of random number generators is best left to the experts (try googling: RANDU).
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pRNG: properties

A pRNG needs a seed to start a sequence. It will always produce the same sequence when initialized 
with that state. 

The period of a pRNG is defined as the maximum, over all starting seeds, of the length of the 
repetition-free of the sequence. We want a large period (if the state of the pRNG is composed on n bits, 
the maximum period will be 2n)

Most pRNG algorithms produce sequences which are uniformly distributed. We want an algorithm 
that does not show correlations on its output.

– Often the quality of a pRNG is judged performing a set of statistical tests.

Finally we want the algorithm to be fast and use as little memory as possible
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pRNG example: LCG

Linear Congruential Generator:
function lcg( Xn , a , c, m ):

    return (a*Xn+c) % m      
The “art” is to find a good set of parameters: a,c,m
For example for GCC implementation (rand() in stdlib.h): m=231 , a=1103515245 , c = 12345



Basics of Monte Carlo 
Radiation Transport



44

Simplest case – decay in flight (1)

• Suppose an unstable particle of life time t is flying with initial momentum p.
– Distance to travel before decay : d = t v

• The life time t is a random value with probability density function

• t  is determined in the general way that the cumulative distribution function itself is a 
random variable with uniform probability on [0,1)

• Thus, having a uniformly distributing random number r on [0,1), one can sample the 
value t with the probability density function f(t).

t = F-1( r ) = - ln( 1 – r )  0 < r < 1
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Simplest case – decay in flight (2)

• When the particle has traveled the d = t v, it decays.
• Decay of an unstable particle itself is a random process 

– For example:
+ ➡ (99.9877 %)
+ ➡  (2.00 x 10-4 %)
 ➡ e+ e       (1.23 x 10-4 %)
+ ➡ e+ e      (7.39 x 10-7 %)
+ ➡ e+ e 0      (1.036 x 10-8 %)
+ ➡ e+ e e+ e-   (3.2 x 10-9 %)

• Select a decay channel by shooting a random number
• In the rest frame of the parent particle, rotate decay products 

in and by shooting a pair of random numbers

• Finally, Lorentz-boost the decay products
• You need at least 4 random numbers to simulate one decay 

in flight

d = sin d d


cosrxrrr
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Evenly distributed points on a sphere

cosrxr

rr
x rxr

rr

d = sin d d
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Compton scattering (1)
Compton scattering e-  ➡ e-  

Distance before Compton scattering, l, is a random
value

 Cross section per atom : (E,z)
 Number of atoms per volume : n = NA / A

 : density, NA : Avogadro number, A : atomic mass
Cross section per volume : (E, ) = n   

 is the probability if Compton interaction per unit length. (E, ) =  -1 is the mean free path associated 
to the Compton scattering process.
The probability density function f(l)

With a uniformly distributing random number r on [0,1), One can sample the distance l. 



l = - ln( r )  0 < r < 1
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Compton scattering (2)
• λ(E, r) and l are material dependent. Distance measured by the unit of mean 

free path (nλ) is independent.

• nλ is independent to the material and a random value with probability density 
function f( nλ ) = exp( -nλ )
– Sample nl at the origin of the particle 

– Update elapsed nλ along the passage of the particle

– Compton scattering happens at nλ = 0

l1 l2 l3

1 2 3

n = -ln( r )  0 < r < 1

n = n - li / i 



49

Compton scattering (3)
• The relation between photon deflection (q) and energy loss for Compton scattering is 

determined by the conservation of momentum and energy between the photon and 
recoiled electron.

● For unpolarized photon, the Klein-Nishina angular distribution function per steradian of 
solid angle  

● One can use acceptance-rejection method to sample
the distribution.


h : energy of incident photon
h0 : energy of scattered photon
E : energy of recoil electron
me : rest mass of electron
c : speed of light 
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Multiple Coulomb scattering

• Single Coulomb scattering : deflection of a charged particle in the Coulomb field of a nucleus. 
– Small deviation angle, practically no energy loss
– In finite thickness, a particle suffers so many consecutive Coulomb scattering ( > 106 

interaction /mm in dense material ).
• Simulate many interactions in a path segment of a given length s by a single 

computational step using the multiple-scattering approximation theories.
• Parameters:

– Longitudinal displacement : x
– Lateral displacement : r, 
– True path length : 
– Angular deflection :  

• Theories:
– Goudsmit-Saunderson theory
– Lewis theory
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Multiple Coulomb scattering
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Multiple Coulomb scattering
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Ionization
• A charged particle collides with a quasi-free electron and knocks it off (-ray).

•                      is the cross-section of knocking-off an electron of energy T, and 

it has an infrared divergence.

• Maximum transferable kinetic energy Tmax = 

– e.g.  Muon with E = 1.06 GeV ( = 10) : Tmax ~ 100 MeV

• Cross-section for -ray above cutoff :

e-E0

T

2 me c2 2 2

1 + 2 me / m0  + (me / m0 )2 



54

• Ignore generating d-rays below Tcut. Energies taken by multiple sub-cutoff electrons are considered as 
continuous energy loss of the projectile particle.

• Mean energy of e- below cutoff : 

• Mean energy loss by the projectile due to sub-cutoff e- :

• Restricted Linear Energy Transfer :   Lcut = -
• Stopping Power = Unrestricted Linear Energy Transfer : LTmax 

• Bethe-Bloch Formula

where : K = 4  NA re2 me c2  ~ 0.307075 (MeV g-1 cm2)

             z : charge of incident particle Z : atomic number of target material
              I : characteristic ionization constant (material dependent)

Continuous energy loss



55

Mean energy loss

Minimum Ionizing Particle :  ~ 3.5  (  = p/m ) 
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Fluctuations in energy loss
• A real experiment cannot measure <dE/dx>. 

– It measures the energy deposition E in finite thickness x. 
➡Sampling of energy loss distribution

• For thin detector or low density material, the energy loss distribution shows 
large fluctuation with long tail (Landau tail).
– e.g. silicon sensor 300 m thick : Emip ~ 82 keV, <E> ~ 115 keV

• For thick detector and high density material, energy loss distribution shows a 
Gaussian-like distribution.

Low 
density

High 
density
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dE/dx measurements can be used to identify particle type


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Energy loss due to bremsstrahlung
• High energy charged particles undergo an additional energy loss (in addition to ionization 

energy loss) due to bremsstrahlung, i.e. radiation of photons, in the Coulomb field of the atomic 
nuclei.

• Most important characters of energy loss due to bremsstrahlung.
– Proportional to 1/m2 : light particle radiates more energy ( e- / - ~ 40000 )
– Proportional to E : bremsstrahlung is significant in higher energy

• Critical energy :

– Ec for e- ~  19 MeV, Ec for - ~  1 TeV
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Radiation length

• Radiation length (X0) :

• With radiation length, dE/dx due to bremsstrahlung for electron can be 
simplified.

Material X0 (cm) Material X0 (cm)

H2 gas 700000 He 530000

C 18.8 Fe 1.76

Cu 1.43 W 0.35

Pb 0.56 Air 30000

SiO2 12 Water 36
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Overview of hadronic interaction
• Both charged and neutral hadrons can interact with material via the strong force 

(a.k.a. hadronic interaction).
• Hadronic interaction is characterized by the hadronic interaction length had

– Hadronic interaction length is a material constant. 
– Intensity of hadron beam attenuates in matter due to hadronic interaction.

I ( x ) = I0 e –x /  hadinel NA  / A  (had ~ 35 A1/3 (cm))

Materi
al

X0 
(cm)

had 
(cm)

C 18.8 38.1

Fe 1.76 16.76

Cu 1.43 15.06

W 0.35 9.59

Pb 0.56 17.09

Water 36 91

For high-Z material,  is 10-30 
times larger than X0

 ➡more material is needed to 
stop hadrons compared to 
electrons



Radiation Simulation and Monte Carlo Method - M. Asai (SLAC)



62

Process competition
• “Ordinary” physics makes point-like interaction. Given many physics processes have chances to 

occur, one needs to make a fair competition among these eligible processes.
• Given PDF of each process, one can sample the path length normalized by mean free path 

(radiation length, hadronic interaction length, decay time, etc.) for each physics process. 
• Compare the path lengths proposed by all physics processes. The process that proposes the 

shortest length occurs.
– Given the length is normalized, competition should be made by the actual length ( normalized 

length x mean free path of the material ).
• Once the particle experiences an interaction by a physics process, the path length for that process 

is re-sampled, while proposed path lengths of other processes are reduced by the length traveled. 
• Continuous processes (continuous energy loss, multiple scattering, Cherenkov radiation, etc.) are 

applied cumulatively.

Process A
Process B
Process C



Speedup of simulations:
Variance Reduction techniques
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Buffon’s needle – once again
• Suppose the distance between lines (D) is much larger than the length of the needle (L). In naïve 

simulation, the needle’s location (x) is sampled uniformly over [0,D). 
 ~ (2 L / D) * ( h / n )

• However, the needle has no chance to hit lines for L < x < D – L. Also, symmetry shows the 
probability of hitting lines for [0,D/2) is equal to [D/2,D). 

• Once can estimate  by sampling x over [0,L), while, given the probability of 
0 < x < L is L/(D/2), each successful count should be multiplied by the weight 
L/(D/2).

 ~ (2 L / D) * ( h* (D / 2 L) / n ) 

Distance 
between 
lines = D

Length of the 
needle = L

x 
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Buffon’s needle – case of D / L = 10,000
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Analogue simulation / non-analogue simulation
• The real power of Monte Carlo is that the sampling procedure can be intentionally biased 

toward the region where the integrand is large or to produce simulated histories that have a 
better chance of creating a rare event, such as Buffon’s needle falling on widely spaced lines. 
– “Analogue simulation” : follows the natural PDF 
– “Non-analogue (a.k.a. biased) simulation” : biased sampling

• Of course, with such biasing, the scoring then must be corrected by assigning weights to each 
history in order to produce a corrected, unbiased estimate of the expected value. 

• In such non-analog Monte Carlo analyses, the sample variance 2(z) of the estimated 
expectation value z is reduced compared to that obtained by an unbiased or analog analysis. 
– In the Buffon’s needle example, biasing a simulation of problem with widely spaced lines 

to force all dropped needles to have one end within a needle’s length of a grid line was 
seen to reduce the relative error by two orders of magnitude over that of a purely analog 
simulation.
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Mean and variance

1

• Two important measures of ant PDF f(x) are its mean  and variance 2.
• The mean  is the expected or averaged value of x defined as

• The variance describes the spread of the random variable x from the mean and defined as

 

Note: 
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Variance reduction techniques
• The aim of Monte Carlo calculation is to seek an estimate      to an expected value       . The 

goal of variance reduction technique is to produce a more precise estimate than could be 
obtained in a purely analogue calculation with the same computational effort.  

• Because both      and      are always positive, the sample variance s2 can be reduced by 
reducing their difference. 

• Thus, the various variance reduction techniques are directed, ultimately, to minimizing the 
quantity      −   . 
– Note that, in principle, it is possible to attain zero variance, if      =      , which occurs if 

every history yields the sample mean. But this is not very likely. However, it is possible 
to reduce substantially the variance among histories by introducing various biases into a 
Monte Carlo calculation.
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Variance reduction techniques

There are simulation problems where the event we are interested in is very rare 
due to physics and/or geometry.
Over the years, many clever variance reduction techniques have been developed 
for performing biased Monte Carlo calculations. 
The introduction of variance reduction methods into Monte Carlo calculations can 
make otherwise impossible Monte Carlo problems solvable. However, use of these 
variance reduction techniques requires skill and experience. 

– Non-analog Monte Carlo, despite having a rigorous statistical basis, is, in 
many ways, an “art” form and cannot be used blindly.
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Example use-cases of variance reduction
• Efficiency of a radiation shielding

– E.g. large flux entering to a thick shield
– Lots of interactions : compute intensive
– Very few particles escape

• Response of thin detector
– E.g. compact neutron detector
– Most of particles pass through without interaction
– Signal is made by the interaction

• Dose in a very small component in a large setup
– E.g. an IC chip in a large satellite in cosmic radiation 

environment
– Most of the incident radiation do not reach to

the IC chip

Thin detectorRare interactions 
making the signal

Remaining flux we 
want to estimate

Thick shield
Incident flux

Volume in which 
we want to 
estimate the dose
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Some variance reduction schemes - 1
Truncation Methods: 
• This is the simplest of all variance reduction techniques. In this approach, the underlying physical models from which 

random samples are taken are simplified so that each history or sample takes, on average, less computer time. 
– For example, some detail in the geometry far from the scoring region generally has little effect on z and so needs not be 

modeled. 
• Equivalently, a detailed model of the low probability tail of the PDF sampling distribution is not needed if z(x) is small in the 

tail region.
• Model simplification is a “brute force” approach, because quadrupling the number of histories only halves the standard 

deviation. Moreover, physical insight into a particular problem is required to introduce simplifications that reduce the 
calculation complexity for parts of sampling space that have little effect on the expected value. 

• The only way to verify that some simplification has negligible effect on the estimate of z is to perform the calculation with 
and without the simplification.

Transform the Problem: 
• In some calculations, problem symmetry or other features of the problem can be used to create an equivalent problem that 

has the same expected value but that can be treated by Monte Carlo much more efficiently. Often such a transformation 
produces far better variance reduction than any other method. 

• However, it takes considerable understanding of the fundamental processes governing the problem to find such a 
transformation. A good example is importance sampling for a radiation shielding problem.
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In an « importance sampling » technique, the analog PDF is    
replaced by biased PDF:

The weight for a given value x, is the ratio of the analog over the 
biased distribution values at x.

Importance Sampling

x

analog
pdf(x)

biased
pdf(x)

x

Phase space 
region of interest

           analog-pdf(x)
w(x) = ------------------
           biased-pdf(x)
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Transforming Buffen’s needle

• Let’s take z = D/L. One can write the probability of hitting lines (p) as such.

• Obviously z << 1 gives the best efficiency.

Distance 
between 
lines = D

Length of the 
needle = L

x




z > 1



z << 1
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Some variance reduction schemes - 2
Modified Sampling Methods: 
• Most variance reduction techniques modify the underlying sampling PDFs to bias the sampling. Such 

biasing is used to increase the likelihood that a history produces a non-zero score, i.e., a non-zero z(xi). 

• Biased sampling can still produce an unbiased score provided each history is assigned a “weight” that is 
adjusted to compensate for any biases introduced at the various steps in the history. By recording a 
history’s weight in the tally, an unbiased value of is achieved.

History Control Methods: 
• Two very powerful variance reduction techniques are to use Russian roulette and/or splitting to alter, on-

the-fly, the number of histories that can potentially produce a 
non-zero tally. As a history moves through phase space, it is possibly killed if it enters a sub-region from 
which it is probably producing zero score, or it is possibly split into multiple histories if a history leaving 
this sub-region is likely to yield a nonzero score. 

• Similarly, in biased sampling, Russian roulette and splitting can be used to eliminate histories that have 
too small a weight or split if the history obtains too large a weight. This technique is often used in 
combinations with other variance reduction methods.
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Splitting / Russian Roulette with geometrical importance

• Slice a thick volume and weigh importance to each slice.
– Typically weight is power of 2.

• When a particle proceeds to more important slice, the particle is duplicated 
with half weight.

• When a particle proceeds to less important slice, the particle is killed with 50% 
probability. If the particle survives, its weight is doubled.

Incident
flux Exiting flux,

tallied

Splitting by 2

Killing
(with 1/2 

probability)
x

Importance :     1        2        4        8       16     32      64
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Splitting / Russian Roulette with geometrical importance
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Weight window
• Watch the weight of each particle.
• If the weight becomes too high;

– It makes too large contribution to the estimation and slow the conversion
– Split the particle with half the weight

• If the weight becomes too low;
– It does not contribute to the estimation and thus it’s a waste of CPU
– Russian Roulette with 50% of probability and double the weight if survives

weight

upper limit

lower limit

w
ei

gh
t

w
in

do
w

split

Russian Roulette



Accuracy, precision, relative error and figure of merit 
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Convergence
› A « toy » example of a bad sampling:

– We want to estimate the mean value of the unknown « yellow » distribution.
– As we don’t know where it is, we try to sample it with the « blue » distribution

› And we know how to compute the weight

82
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Convergence
› A « toy » example of a bad sampling:

– We want to estimate the mean value of the unknown « yellow » distribution.
– As we don’t know where it is, we try to sample it with the « blue » distribution

› And we know how to compute the weight

           analog-pdf(x)
w(x) = ------------------
           biased-pdf(x)



100k events
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› Lots of tiny weights…

›

› Few huge ones…

Weight distribution…



10M events
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Observations that can help spotting the inappropriate sampling:
– We have a wide variety of weights
– Many tiny ones: Waste of time to determine the mean value
– Few huge ones: Responsible for jumps

● Such problemw –if can not be improved- could at least be alleviated with a 
weight window technique

We have huge weights from time to time: 
● Temptation would be to “dismiss” these events
● But in our case, these events bring down the mean value to the correct value
● These are not wrong per-se, but their presence is a sign of a bad sampling

We observe monotonic increase of the mean value
● We are sampling only “one side” of the problem

Some qualitative observations



Part 2
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Basic components

A detector simulation program requires at least the following three components:
– Geometry description module: to describe the experimental setup in terms of shapes, materials, relative 

positioning
– Physics modules: to cover all particles, energies and interaction types of interest
– Primary definition/generation: to describe what are the properties (species, 4-momenta) of the first particles 

that “appear” in the setup (can be provided by an external tool, e.g. a generator -PYTHIA, HERWIG,...- for HEP)
A system (user-hooks) to interact with the simulation and extract the physics quantities must be 
provided (e.g. scorers that record energy deposits in specified regions)
Alternative, useful components:

– Analysis tools to create histograms and store data in files
– Visualization drivers (to display geometry and possibily tracks and doses)
– System integration tools: MPI interfaces to submit jobs on clusters, scripting/macro systems
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Semi-classical Approach
In Geant4, a particle that flies through a detector is treated as a classical particle, i.e. not a wave 
function, but a point-like object which has a well-defined momentum at each instant:

– Space-time position (t, x, y, z)
– Energy-momentum  (E, px, py, pz)

This is a reasonable approximation, given that in most practical situations particles are seen as 
“tracks” in macroscopic detectors

Geant4 is based on a semi-classical approach, because the particles are treated classically, but 
their interactions - cross sections and final states - often take into account the results
of quantum-mechanical effects 
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Simulation in Steps

Treat one particle at the 
time
Treat a particle in steps

For each step
1)  the step length is determined by the cross sections of the physics processes and the 
geometrical boundaries; 
2)  if new particles are created, add them to the list of particles to be transported;
3)  local energy deposit; effect of magnetic and electric fields;
4)  if the particle is destroyed by the interaction, or it reaches the end of the apparatus, or its 
energy is below a (tracking) threshold, then the simulation of this particle is over; 
Repeat for next step or for a new particle
Outputs:  -  new particles created 
                 -  local energy deposits throughout the detector



Next particle

Still alive
Ekin > cut

Inside World

Continuous part
(along the step)

Find next step
(physics process or
volume boundary)

Discrete part
(post step)

Create new particles

Energy deposits
Fields effects

End of the Event

End of the particle

Yes

No

YesNo
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Simulation Chain for HEP Experiments
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Simulation chain for Treatment Planning (medical)

Simulation of 
Treatment head

Phase
Space

file

Patient data
(DICOM)

Ancillary detectors

Dose
In voxels

A
nalysi s

Geant4

Can be done in a single job



Non-exhaustive list of MC codes

• EM physics
– ETRAN (Berger & Seltzer; NIST)
– EGS4 (Nelson, Hirayama, Rogers; SLAC)
– EGS5 (Hirayama et al.; KEK/SLAC)
– EGSnrc (Kawrakow & Rogers; NRCC)
– Penelope (Salvat et al.; U. Barcelona)

• Hadronic physics / general purpose
– Fluka (Ferrari et al., CERN/INFN)
– Geant4 (Geant4 Collaboration)
– MARS (James & Mokhov; FNAL)
– MCNPX / MCNP5 (LANL)
– PHITS (Niita et al.; JAEA)
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S. Agostinelli et al.

Geant4: a simulation toolkit
NIM A, vol. 506, no. 3, pp. 250-303, 2003

J. Allison et al.

Geant4 Developments and Applications
IEEE Trans. Nucl. Sci., vol. 53, no. 1, pp. 270-278, 2006

http://www.geant4.org/
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Geant4 history



Key Geant4 functionalities
• Geant4 is a general purpose Monte Carlo simulation tool 

for elementary particles passing through and interacting 
with matter. It finds quite a wide variety of user domains 
including high energy and nuclear physics, space 
engineering, medical applications, material science, 
radiation protection and security.

• Geant4 offers most, if not all, of the functionalities 
required for the simulation of elementary particle and 
nucleus passing through and interacting with matter.

– Kernel

– Geometry and navigation

– Physics processes

– Scoring

– GUI and Visualization drivers
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Geant4: the first impact

Ok, you go to http://geant4.org and download G4, then what? How do you 
start it?
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Geant4: the first impact

Ok, you go to http://geant4.org and download G4, then what? How do 
you start it?

… well, you don’t! 
Geant4 is a toolkit, not an application, it is a set of libraries and header 
files to build your own application

– Unfortunately this mean that it has a quite steep learning curve
– But many (~100) examples exist from which you can start
– Best way: take part to one of the 1-week G4 courses around the world



Key geometry capabilities

• Richest collection of shapes
– CSG (Constructed Solid Geometry), Boolean 

operation, Tessellated solid, etc.
– The user can easily extend

• Describing a setup as hierarchy or ‘flat’ structure
– Describing setups up to billions of volumes
– Tools for creating & checking complex structures
– Interface to CAD

• Navigating fast in complex geometry model
– Automatic optimization

• Geometry models can be ‘dynamic’ 
– Changing the setup at run-time, e.g. “moving 

objects”



• Geant4 offers

– Electromagnetic processes

– Hadronic and nuclear processes

– Photon/lepton-hadron processes

– Optical photon processes

– Decay processes

– Shower parameterization

– Event biasing techniques 

– And you can plug-in more 

• Geant4 provides sets of alternative physics models so that the user 
can freely choose appropriate models according to the type of 
his/her application.

– For example, some models are more accurate than others at a 
sacrifice of speed.

Physics models in Geant4
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