

Forum on Tracking Detector Mechanics – BONN, Germany

Developments on the mechanics and cooling for the CLIC tracking detector

Szymon Krzysztof Sroka, on behalf of the CLICdp collaboration

Outline

Introduction

Vertex Detector

- Lightweight support structure development
- Cooling & Vibrations

Tracker Detector

- Barrel & Disks support structures
- Support Tube & Beam Pipe
- Assembly sequence

Summary

CLIC project

Fine grained (PFA) calorimetry, 1+7.5λ_i

Low-mass vertex detector with ~25 μm pixels

Szymon Krzysztof Sroka

Detector tracking system

Vertex

- ~25×25 μm pixel size (~2 Giga-pixels);
- Radiation level <10¹¹ n_{eq}cm⁻²year⁻¹;
 (10⁴ times lower than LHC);
- Room-temperature operation;
- 0.2% X₀ material per layer:
 - Very thin materials/sensors ;
 - Low-power design, power pulsing, air cooling (goal 50 mW/cm²);

255 25

Detector tracking system

Tracker

- Silicon Strips:
 - Strips length from 1 to 10 mm;
- Occupancy less than 10⁻³;???
- Number of layers:
 - 3 Inner & 3 Outer Barrel;
 - 7 Inner & 4 Outer Disks;
 - Room-temperature operation;
- ~1-2% X₀ material per layer
 - Thin sensors ;
 - Power pulsing;

Requirements and objectives

Low material budget

- 0.2% X₀ per layer in the vertex detector (including 0.11% for silicon)
 - Low-mass support structures (~0.05% X₀);
 - Air (dry) cooling strategy (500 W; T_{operation}<40 °C);
- ~1-2% X_0 per layer in the tracker

Short term objectives

- Layout definition of the tracking system;
- Conceptual design of the support structures;
- Prototyping of low mass support structures;
- Evaluation of the feasibility of forced convection air cooling for the vertex detector (thermal + vibrations).

Vertex detector

Stave support structure

Designs

- Development of support structures that fulfil the 0.05% X₀ of radiation length (1.8x26x280mm³);
- 2 designs currently being pursued (full sandwich & cross bracing);
- Using thin prepregs and glue films from NTPT (30 gm/m²).

Stave label #	CERN #5	CD #7	CD #8	NTPT #5
	M55J + Rohacell 51	T800 [0°; 90°; 0°] + Rohacell 51	T800 [0°; 90°; 0°] + Nomex	M55JB [0°] + Rohacell 51
Material	\mathbf{X}		and a second second	
Flexural stiffness (Span=180mm)	2.23 N/mm	2.12 N/mm	2.17 N/mm	-
Flexural stiffness (Span=260mm)	-	0.781 N/mm	0.776 N/mm	1.22 N/mm
Mass (280mm long)	1.76g	3.17 g	3.45 g	2.07 g
X/X0	0.051%	0.104 %	0.112 %	0.064 %
Manufacturing difficulty	$\overline{\mathbf{i}}$	\bigcirc	\odot	
CERN CLC		Szymon Krzysztof Sroka		8

Stave support structure

Prototyping at CERN

Szymon Krzysztof Sroka

Air cooling

Concept

- Moderate velocity forced convection;
- Dry air delivered/extracted through channel between beam pipe and CFRP shell;
- Helical shaped flow;
- Forward petals placed to minimize disturbances.

Air cooling

Mock-up

Air cooling

Performance

@ 50 mW/cm²: $\Delta T_{L1} \approx 15 \text{ °C}$; $\Delta T_{L2} \approx 14 \text{ °C}$; $\Delta T_{L3} \approx 10 \text{ °C}$

Tracker detector

Inner and Outer Tracker

Detector Sub-Systems

Inner Tracker:

Outer Tracker:

- 7 Tracker Disks
- 3 Barrel Layers
- 4 Tracker Disks
- 3 Barrel Layers

Max. sag < 100 $\mu \rm{m}$

Szymon Krzysztof Sroka

Inner Barrel

FEA simulations

First iteration:

- Sandwich structure
- Material proposal: CFRP skins + CORE (HoneyComb/Rohacell IG-51)

FEA Layup - Staves

	Material	Thickness of layer [µm]	Radius [mm]	Cross- section area [mm²]
Corners (thin shell elements)	UD prepreg M55J 4 Layers	100	-	-
Cross member beams on both sides	3 impregnated thread M55J	-	0.45	~0.63
Cross member beams on bottom (nearby to cold plate)	4 impregnated thread M55J		0.5	~0.78

K: Static Structural

Total Deformation Type: Total Deformation

Unit: mm Time: 1

Outermost layers: OTB2 & OTB3

Support Structure concept

Outermost layers: OTB2 & OTB3

FEA simulation

Szymon Krzysztof Sroka

Inner Tracker Disks

Support Structure concept

Inner Tracker Disks

Support Structure concept

Szymon Krzysztof Sroka

Inner Tracker Disks

FEA simulation

Total Deformation Type: Total Deformation Unit: mm Time: 1

• Estimated Radiation Length: ~0.235 % X0

Szymon Krzysztof Sroka

Outer Tracker Disks

Support Structure concepts

Outer Tracker Disks

FEA simulation

H: Static Structural Total Deformation Type: Total Deformation

Unit: mm Time: 1

- Sag: ~ 13 μ m ullet
- 1st Natural frequency: ~ 28 Hz ullet
- Estimated Radiation Length: ~0.26 % X0 ullet

Outer Tracker Disks

Support Structure concept

Support Tube & Beam Pipe

Concept

Design Objectives:

 Minimizing the stresses on the interface between the parts made of beryllium & stainless steel

- 1 Cylindrical: R1=30 [mm], L1= 308 [mm], T1= 0.6 [mm]
- 2 Conical: R1=30 [mm], R2=240 [mm, L2= 1820 [mm], T2= 4.8 [mm]
- **3 Cylindrical:** R2=240 [mm], L3= 381 [mm], T3= 4.8 [mm]

Support Tube & Beam Pipe

FEA simulations

B: Copy of Static Structural

Equivalent (von-Mises) Stress - Beam_Pipe Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1

2.2435 Max 1.9947 1.7459 1.4971 1.2483 0.99948 0.75068 0.50188 0.25308 0.0042767 Min

B: Static Structural Total Deformation - Support_Tube Type: Total Deformation Unit: mm Time: 1 0.11847 Max

Min

Мах

0.1053	
0.092141	
0.078978	
0.065815	
 0.052652	
 0.039489	
0.026326	
0.013163	
0 Min	

Allala

Inner Tracker - Barrel

Inner Tracker - Barrel

Inner Tracker - Barrel & Tracker Disks

Inner Tracker - Tracker Disks & Air Duct

Integration of Inner Tracker with Beam Pipe

Completed assembly of Inner Tracker

11)

Outer Tracker - Barrel

Outer Tracker - Tracker Disks

Completed assembly of Detector

Summary:

- An air cooling strategy for the inner region of the CLIC detector is currently being investigated and developed
- Tests indicate that it will be possible to maintain sensor temperatures <40°C for a nominal heat load of 50 mW/cm2;
- Lightweight support structure concepts for the inner & outer tracker layers (barrel & endcaps) have been shown
- Work is ongoing towards the prototyping of nodes and assembly of a portion of the outermost barrel space frame.

