Experimental overview of top FCNC and momalous couplings

Kirill Skovpen (IPHC Strasbourg)

3rd CMS Single Top workshop

Strasbourg, France 2-3 June 2016

Outline

Anomalous Wtb couplings

FCNC interactions with top quarks

www.alamy.com - B6011E

Anomalously delicious

Anomalous Wtb couplings

- Single top production cross section is proportional to the strength of Wtb interaction
- * Provides the direct measurement of |V_{tb}|
- ***** Top quarks are **polarized** in single top production
- Probe anomalous Wtb couplings: vector (V_R) and tensor (g_L, g_R)
- Look for differences in kinematical and angular distributions in the presence of anomalous couplings

$$\mathcal{L}_{tWb}^{\text{anom.}} = -\frac{g}{\sqrt{2}}\overline{b}\gamma^{\mu}(V_{L}P_{L} + V_{R}P_{R})tW^{-}_{\mu} - \frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}}(g_{L}P_{L} + g_{R}P_{R})tW^{-}_{\mu} + \text{h.c.}$$

In SM: $V_L = V_{tb} \approx I$ with V_R , g_L and g_R vanishing at LO

2016/06/02

Observ Kirill Skovpen - CMS Single Top workshop

 $f_V^R V_{tb} \equiv V_R, f_T^L V_{tb} \equiv q_L, f_T^R V_{tb} \equiv q_R$

Anomalous Wtb in t-channel

- Probe anomalous Wtb coupling in single top t-channel µ+jets events
- Analysis is based on BNN approach to reject QCD (QCD BNN) and to extract the signal (SM BNN)
- An additional **aWtb BNN** to extract the anomalous Wtb contribution

CMS preliminary, $\sqrt{s} = 7$ TeV, L = 5.0 fb⁻¹ ^{1.4} ج 95% CL observed 8% CL observed 1.3 5% CL expecter 8% CL expected 1.2 1.1 0.7 0.6 0.3 f_T 0.05 0.15 0.2 0.25 0.1

 $|f_V^L| > 0.90 \ (0.88)$ $|f_V^R| < 0.34 \ (0.39)$

CMS-PAS-TOP-14-007

CMS, 5 fb⁻¹, 7 TeV

$$|f_V^L| > 0.92 \ (0.88)$$

 $|f_T^L| < 0.09 \ (0.16)$

Observed (expected) @ 95% CL

W boson helicity

- W helicity projection of W's spin on its momentum
- ► Helicity fractions: $F_{L,R,0} = \Gamma_{L,R,0} / \Gamma(t \rightarrow Wb)$, $\Sigma F_i = 1$
- Helicity is sensitive to the real part of Wtb anomalous couplings

$$\rho(\cos\theta_{\ell}^{*}) \equiv \frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{8} (1 - \cos\theta_{\ell}^{*})^{2} (F_{\mathrm{L}}) + \frac{3}{4} \sin^{2}\theta_{\ell}^{*} (F_{0}) + \frac{3}{8} (1 + \cos\theta_{\ell}^{*})^{2} (F_{\mathrm{R}})$$

2016/06/02

W helicity in single top event topology

- First measurement of W boson helicity in single top quark event topology
- ▶ F₀, F_L and W+jets fraction are free parameters in the fit

<u>JHEP 01 (2015) 053</u> **CMS**, 20 fb⁻¹, 8 TeV

Best fit gives $Re(g_L) = -0.017$, $Re(g_R) = -0.008$

$$\begin{split} F_{\rm L} &= 0.298 \pm 0.028\,({\rm stat}) \pm 0.032\,({\rm syst}), \\ F_0 &= 0.720 \pm 0.039\,({\rm stat}) \pm 0.037\,({\rm syst}), \\ F_{\rm R} &= -0.018 \pm 0.019\,({\rm stat}) \pm 0.011\,({\rm syst}), \end{split}$$

Measured helicity fractions are consistent with SM

Forward-backward asymmetry

 Measure forward-backward asymmetry in the normal direction (A^N_{FB}) in **single top** events

 probe complex phase of g_R

In ttbar:

▶ Top quarks are only slightly polarized due to EW corrections → no A_{FB} asymmetry

In single top:

- Top quark is highly polarized (P \approx 0.9)
- Two new reference directions: N and T
- A presence of FB asymmetry would be a sign of CP violation in top quark decays

$$A_{FB}^{N} \equiv \frac{N_{evt}(\cos\theta^{N} > 0) - N_{evt}(\cos\theta^{N} < 0)}{N_{evt}(\cos\theta^{N} > 0) + N_{evt}(\cos\theta^{N} < 0)}$$

A_{FB} in single top

- Measure A_{FB} asymmetry in lepton+jets events
- Asymmetry extracted with unfolding the cosθ^N distribution
- **g**_R assumed to be purely **imaginary**

ATLAS-CONF-2013-032 ATLAS, 5 fb⁻¹, 7 TeV

Double differential asymmetry in single top

- Perform a **double differential angular measurement** in θ^* and ϕ^*
- Angular distributions are expressed in the form of parametrized spherical harmonics

De

in the top quark rest frame

Re[g_R/V_L]

0.4⊢

0.2

-0.2

-0.4

-0.6h

-0.4 -0.3

ATLAS

 $\sqrt{s} = 7 \text{TeV}, 4.6 \text{ fb}^{-1}$

-0.2

-0.1

0

JHEP 04 (2016) 023 **ATLAS**, 5 fb⁻¹, 7 TeV

 \hat{x}

ŷ

Global fit for Wtb anomalous couplings

- How to combine and interpret all experimental results related to Wtb anomalous interactions ?
- Use an EFT approach with dimension-6 operators to calculate the deviation from SM in a model independent way at NLO
- Perform a global fit of general Wtb couplings using the constraints from experimental results

$$\begin{split} f_1^L &= \frac{C_{\phi q}^{(3)*} v^2}{\Lambda^2}, & f_1^R = \frac{1}{2} C_{\phi \phi}^* \frac{v^2}{\Lambda^2}, \\ f_2^L &= \sqrt{2} C_{bW}^* \frac{v^2}{\Lambda^2}, & f_2^R = \sqrt{2} C_{tW} \frac{v^2}{\Lambda^2}. \end{split}$$

Coefficients of effective Wtb couplings are related to Wilson coefficients of dimension-6 operators

(d)

 $b \rightarrow s\gamma$

Allowed

0.0

 f_1^L

-0.1

68%C.L.

90%C.L.

95%C.L.

0.2

0.1

0.2

0.1

0.0

-0.1

-0.2 -0.2

 f_2^R

arXiv:1504.03785

Allowed parameter space for the effective couplings

0.4

measurement

Global fit for Wtb anomalous couplings

A global fit by TopFitter collaboration to set bounds on dimension-6 operators

$$V_L \rightarrow V_{tb} + C_{\varphi q}^{(3)} v^2 / \Lambda^2$$
$$g_L \rightarrow \sqrt{2} C_{uW} v^2 / \Lambda^2$$

$$V_R
ightarrow rac{1}{2} C_{\varphi u d} v^2 / \Lambda^2$$

 $g_R
ightarrow \sqrt{2} C_{dW} v^2 / \Lambda^2$

A. Buckley et al., JHEP 04 (2016) 015 FCNC

FCNC interactions

- Flavour-changing neutral current (FCNC) → process where a fermion changes its flavour with preserving its charge
- FCNC amplitudes are forbidden at tree level by the Glashow-Iliopoulos-Maiani (GIM) mechanism [Phys. Rev. D2 (1970) 1285] in the Standard Model (SM)
- FCNC is only possible in SM at higher orders via loops induced processes → highly suppressed
- FCNC decays could be enhanced in various BSM

FCNC in BSM

	2HDM	MSSM	RS
BR(t→cg)	0-8 - 0-4	0 ⁻⁷ - 0 ⁻⁶	0-10
BR(t→cZ)	0-10 - 10-6	0 ⁻⁷ - 0 ⁻⁶	10-5
BR(t → c γ)	0 ⁻⁹ - 0 ⁻⁷	0 ⁻⁹ - 0 ⁻⁸	10-9
BR(t→cH)	0 ⁻⁵ - 0 ⁻³	0 ⁻⁹ - 0 ⁻⁵	10-4

FCNC in SM

 $BR(t \rightarrow c\mathbf{g}) \approx 5 \times 10^{-12}$ $BR(t \rightarrow c\mathbf{Z}) \approx 1 \times 10^{-14}$ $BR(t \rightarrow c\mathbf{Y}) \approx 5 \times 10^{-14}$ $BR(t \rightarrow c\mathbf{H}) \approx 3 \times 10^{-15}$ $\int_{\mathcal{V}} (t \rightarrow \mathbf{u} \times \mathbf{X}) \approx BR(t \rightarrow \mathbf{c} \times \mathbf{X}) |V_{ub}/V_{cb}|^{2}$ J.A. Aguilar-Saavedra, Acta Phys. Polon. B35 (2004) 2695-2710

Possible 2HDM FCNC enhancement in one-loop induced process

K. Agashe et al., arXiv:1311.2028 2016/06/02

Why top quarks ?

- Distinctive event signature of top quark decay
- Several models predict large coupling of new particles to top quarks → enhanced sensitivity to FCNC in the top quark sector
- Search in single top (FCNC at production level) and top quark pair (FCNC in top quark decays) events - very similar final states in both production channels
- Single top production is particularly interesting due to enhanced FCNC production with an up-quark → differentiate between up and charm FCNC couplings
- With the charm-tagger in place it would be possible to have separate analyses of up and charm FCNC couplings in ttbar events

in single top

in ttbar

FCNC with top quarks

Top + Z

Top +

Higgs

Top + gluon

ATLAS: Eur. Phys. J. C (2016) 76:55

CMS: CMS-PAS-TOP-14-007

Search for single top

Eur. Phys. J. C (2016) 76:55 ATLAS, 20 fb⁻¹, 8 TeV

MEtop @NLO (approx.)

Event signature is **top quark leptonic decay**: exactly one isolated lepton, missing E_T and one b-tagged jet

Background: **W+jets**, QCD multijet, single top, ttbar, Z+jets

QCD multi-jet measured in data from missing E_T template fit

$$\begin{split} \kappa_{\rm ugt} / \Lambda &< 0.58 \cdot 10^{-2} \ {\rm TeV^{-1}} \\ \kappa_{\rm cgt} / \Lambda &< 1.3 \cdot 10^{-2} \ {\rm TeV^{-1}} \\ {\rm BR}(t {\rightarrow} {\bf gu}) &< 0.0040 \ \% \ ({\rm obs}) \\ & 0.0035 \ \% \ ({\rm exp}) \\ {\rm BR}(t {\rightarrow} {\bf gc}) &< 0.017 \ \% \ ({\rm obs}) \\ & 0.015 \ \% \ ({\rm exp}) \end{split}$$

Search for single top in t-channel

Kirill Skovpen - CMS Single Top workshop

CMS-PAS-TOP-14-007

CMS, 5 fb⁻¹, 7 TeV

Top + Z

ATLAS: Eur. Phys. J. C76 (2016) 12
CMS: Phys. Rev. Lett. 112 (2014) 171802
CMS: <u>CMS-PAS-TOP-12-021</u>

Eur. Phys. J. C76 (2016) 12 ATLAS, 20 fb⁻¹, 8 TeV

Phys. Rev. Lett. 112 (2014) 171802 CMS, 20 fb⁻¹, 8 TeV

Event signature: three isolated leptons, missing E_T , ≥ 2 jets of which one is b jet

Background: WW/WZ/ZZ+jets, ttbar+X

Background estimated from data

BR(t→Zq) < 0.05 % (obs) 0.09 % (exp)

Search for tZ in single top

CMS-PAS-TOP-12-021 **CMS**, 5 fb⁻¹, 7 TeV

Event signature: three isolated leptons, missing E_T, one b jet

Background: WZ/ZZ +jets, fake leptons

VV and fake lepton background measured **from data** using $m_T(W)$ template fit

Kirill Skovpen - CMS Single Top workshop

 $BR(t \rightarrow Zu) < 0.51 \% (obs)$ $BR(t \rightarrow 2c) < 0.11 \% (obs)$ $BR(t \rightarrow gu) < 0.56 \% (obs)$ 0.56 % (exp)

 $BR(t \rightarrow gc) < 0.71 \% (obs)$ 1.03 % (exp) $\kappa_{\rm Zut}/\Lambda < 0.45 {\rm ~TeV^{-1}}$ $\kappa_{\rm Zct}/\Lambda < 2.27 {\rm ~TeV^{-1}}$ $\kappa_{\rm ugt}/\Lambda < 0.10 {\rm ~TeV^{-1}}$ $\kappa_{\rm cgt}/\Lambda < 0.35 {\rm ~TeV^{-1}}$

Top + gamma

CMS: <u>JHEP 04 (2016) 035</u>

JHEP 04 (2016) 035 Search for tgamma in single top CMS, 20 fb⁻¹, 8 TeV

 W^+ u/c ν_{μ} u/c PROTOS @LO

m,=175 GeV

m,=175 GeV

m,=175 GeV

m,=172.5 GeV

m,=172.5 GeV

(**a=**ù)

10⁻⁴

CMS

m_t=172.5 GeV

(q=c)

10⁻³

H1 (q=u) m,=175 GeV

10⁻²

Event signature: one isolated muon, one photon, missing E_T, one b jet

Background: Wγ+jets, W+jets, ttbar, Zy+jets

> **FCNC NLO** corrections are sizable (k \approx 1.375

Events / 0.1

 $W\gamma$ +jets and W+jets measured from data using $\cos(W, \mathbf{y})$ template fit

10⁻⁵

B(t → qZ) 10⁻¹

10⁻²

10⁻⁴

10⁻⁵

L3

CDF

D0

10⁻³ **ATLAS**

CMS

Top + Higgs

ATLAS: <u>JHEP 06 (2014) 008</u> – $H \rightarrow \chi \chi$ CMS: <u>CMS-PAS-TOP-14-019</u> – $H \rightarrow \chi \chi$ ATLAS: <u>JHEP 12 (2015) 061</u> – $H \rightarrow bb$ CMS: <u>CMS-PAS-TOP-14-020</u> – $H \rightarrow bb$ CMS: <u>CMS-PAS-TOP-13-017</u> – $H \rightarrow WW/ZZ/\tau\tau$

JHEP 06 (2014) 008 **ATLAS**, 5+20 fb⁻¹, 7+8 TeV

ATLAS

(b)

Data

100 150 200 250 300 350 400

0.51 % (exp)

Signal, B = 5%

SHERPA γγj, norm. to data

m(top)

channel

in hadronic

Kirill Skovpen - CMS Single Top workshop

450 500

m_{iii} [GeV]

CMS-PAS-TOP-14-019 CMS, 20 fb⁻¹, 8 TeV

Event signature: two photons, one b jet, 3 jets (hadronic channel) or one isolated lepton, missing E_T and one b jet and one additional jet (leptonic channel)

Background: **yy+jets**, W+jets, ttbar

Non-resonant **yy+**jets background estimated from data

JHEP 12 (2015) 061 ATLAS, 20 fb⁻¹, 8 TeV

CMS-PAS-TOP-14-020 CMS, 20 fb⁻¹, 8 TeV

Madgraph@LO

Event signature: \geq 4 jets of which \geq 3 jets are b jets, one lepton and missing E_T

- Data

t→cH

tt V

VV

200

tt Higgs

Drell Yan

Single Top

250

W+Jets

📕 tī

Background: ttbar+jets

Background validated in data with two b tag jets

 $BR(t \rightarrow Hu) < 1.92 \% (obs)$ 0.85 % (exp) $BR(t \rightarrow Hc) < 1.16 \% (obs)$ 0.89 % (exp)

Summary on FCNC limits

• HERA:

ZEUS Collaboration, Phys. Lett. B708 (2012) 27; H1 Collaboration, Phys. Lett. B 678 (2009) 450; A.A. Ashimova and S.R. Slabospitsky, Phys. Lett. B668 (2008) 282

• LEP:

ALEPH Collaboration, Phys. Lett. B543 (2002) 173; DELPHI Collaboration, Phys. Lett. B590 (2004) 21; OPAL Collaboration, Phys. Lett. B521 (2001) 181; L3 Collaboration, Phys. Lett. B549 (2002) 290; LEP Exotica WG, LEP Exotica WG 2001-01

• TEVATRON:

CDF Collaboration, Phys. Rev. Lett. 101 (2008) 192002; DØ Collaboration, Phys. Lett. B701 (2011) 313; CDF Collaboration, Phys. Rev. Lett. 102 (2009) 151801; DØ Collaboration, Phys. Lett. B693 (2010) 81; CDF Collaboration, Phys. Rev. Lett. 80 (1998) 2525

• CMS:

CMS Collaboration, Phys. Rev. Lett. 112 (2014) 171802; CMS Collaboration, CMS-PAS-TOP-14-007; CMS Collaboration, CMS-PAS-TOP-14-003; CMS Collaboration, CMS-PAS-TOP-14-019

• ATLAS:

ATLAS Collaboration, arXiv:1509.00294; ATLAS Collaboration, arXiv:1508.05796; ATLAS Collaboration, TOPQ-2014-14

Summary on CMS top FCNC decays

(CMS Preliminary, 8 TeV	March 2016
Γ		
	Phys.Rev.Lett 112 (2014) 171802	
	tī, Br(t→Zq)	
	JHEP04(2016)035	
	single top, Br(t $\rightarrow \gamma$ u)	
	single top, Br(t $\rightarrow \gamma$ c)	
	CMS PAS TOP-13-017	
	tť. Br(t→H c), H→WW,ZZ,ττ	
	CMS PAS TOP-14-020	
	tť, Br(t \rightarrow H u), H \rightarrow b \overline{b}	
	tť, Br(t \rightarrow H c), H \rightarrow b \overline{b}	
	CMS PAS TOP-14-019	
	tt, Br(t \rightarrow H u), H $\rightarrow\gamma\gamma$	
	tt, Br(t \rightarrow H c), H \rightarrow $\gamma\gamma$	
	····· 95% CL Observed Limit ±1σ Exp.Lim	nit
	- 95% CL Expected Limit ±2σ Exp.Lim	nit .
L		
10-	10 ⁻³ 10 ⁻² 10 ⁻¹	1
	Тор	decay Br (%)

Global fit for FCNC couplings

- Parametrize top FCNC interactions with EFT approach at NLO
- Set bounds on top quark effective operators via χ²-based global fit

$$\begin{split} & -\frac{g_W}{2c_W} \Big\{ \begin{matrix} v_{tq}^Z \\ -a_{tq}^Z \end{matrix} = \frac{-e}{2s_W c_W} \frac{m_t^2}{\Lambda^2} \big[C_{\varphi u}^{(a+3)*} \pm C_{\varphi q}^{-(a+3)*} \big], \\ & -\frac{g_W}{2\sqrt{2}} g_{qt} \Big\{ \begin{matrix} g_{qt}^g \\ g_{qt}^a \end{matrix} = \frac{-2m_t}{v} \frac{m_t^2}{\Lambda^2} \left[C_{u\varphi}^{(a3)} \pm C_{u\varphi}^{(3a)*} \right], \\ & -e \frac{\kappa_{tq}^{\gamma}}{\Lambda} \Big\{ \begin{matrix} f_{tq}^{\gamma} \\ ih_{tq}^{\gamma} \end{matrix} = e \frac{m_t}{\Lambda^2} \left[(C_{uB}^{(3a)} + C_{uW}^{(3a)}) \\ \pm (C_{uB}^{(a3)} + C_{uW}^{(a3)})^* \right], \\ & -\frac{g_W}{2c_W} \frac{\kappa_{tq}^Z}{\Lambda} \Big\{ \begin{matrix} f_{tq}^Z \\ ih_{tq}^Z \end{matrix} = \frac{-e}{s_W c_W} \frac{m_t}{\Lambda^2} \left[(s_W^2 C_{uB}^{(3a)} - c_W^2 C_{uW}^{(3a)}) \\ \pm (s_W^2 C_{uB}^{(a3)} - c_W^2 C_{uW}^{(3a)})^* \right] \\ & -g_s \frac{\kappa_{tq}^g}{\Lambda} \Big\{ \begin{matrix} f_{tq}^g \\ ih_{tq}^g \end{matrix} = g_s \frac{m_t}{\Lambda} \big[C_{uG}^{(3a)} \pm C_{uG}^{(a3)*} \big]. \end{split}$$

G. Durieux et al., arXiv:1412.7166

,

Conclusion

- No evidence of top quark anomalous interactions so far
- ATLAS and CMS have significantly improved the exclusion limits on anomalous Wtb and FCNC couplings with Run I data

Run II analyses ongoing

The best limits on Wtb anomalous couplings (approximative summary)

$ V_R $	< 0.3	TOP-14-007
$ g_L $	< 0.1	<u>TOP-14-007</u>
Re(g _L)	pprox [-0.2, 0.2]	JHEP 01 (2015) 053
$Re(\mathbf{g}_{R})$	pprox [-0.1, 0.1]	JHEP 01 (2015) 053
$Im(g_R)$	pprox [-0.2, 0.2]	JHEP 04 (2016) 023

The best limits on FCNC top quark decay BR from the LHC

	t→gu	0.004 %	Eur. Phys. J. C (2016) <u>76:55</u>
	$t \rightarrow g_C$	0.017 %	Eur. Phys. J. C (2016) <u>76:55</u>
	t→Zq	0.05 %	<u>Phys. Rev. Lett. 112</u> (2014) 171802
	t→yu	0.01 %	JHEP 04 (2016) 035
_	t→yc	0.17 %	<u>JHEP 04 (2016) 035</u>
5	t→Hu	0.42 %	<u>CMS-PAS-TOP-14-019</u>
<u> </u>	t→Hc	0.46 %	JHEP 12 (2015) 061

Backup slides

Anomalous Wtb at Tevatron

Phys. Lett. B 708:21-26, 2012 **D0**, 5.4 fb⁻¹, 1.96 TeV

- Probe anomalous Wtb coupling in single top t- and s-channels
- Use Bayesian Neural Network (BNN) approach to suppress W+jets and ttbar backgrounds
- Consider two non-vanishing couplings at a time (V_L and one anomalous)

 $f_{R_V}V_{tb} \equiv V_R, f_{L_T}V_{tb} \equiv g_L, f_{R_T}V_{tb} \equiv g_R$

FCNC without top quarks

FCNC at LEP and HERA

Search for $e^+e^- \rightarrow t u/c$ at LEP2

Search for $ep \rightarrow t e X$ at HERA

L3 Phys. Lett. B549 (2002) 290-300 OPAL Phys. Lett. B521 (2001) 181-194 ALEPH Phys. Lett. B494 (2000) 33 DELPHI Phys. Lett. B590 (2004) 21-34

$$\begin{array}{l} BR(t \rightarrow \mathbf{y}q) \lesssim 4 \% \\ BR(t \rightarrow \mathbf{Z}q) \lesssim 10 \% \end{array}$$

ZEUS Phys. Lett. B708 (2012) 27-36 **HI** Phys. Lett. B678 (2009) 450

$$\Delta \mathcal{L}_{\text{eff}} = e \ e_t \ \bar{t} \frac{i\sigma_{\mu\nu}p^{\nu}}{\Lambda} \ \kappa_\gamma \ u \ A^\mu + \frac{g}{2\cos\theta_W} \ \bar{t}\gamma_\mu \ v_Z \ uZ^\mu \ + \text{h.c.} \qquad \wedge = 175 \ \text{GeV}$$

FCNC at Tevatron

Phys. Rev. Lett. 101 (2008) 192002

FCNHiggs

Tight constraints on FCNH couplings to light quarks from neutral meson oscillations

FCNH in ttbar

u,c

 W^{-}

 W^{\cdot}

Expect large coupling with top quark ?

CMS-PAS-HIG-13-034 CMS, 20 fb⁻¹, 8 TeV

Based on a combination of two analyses performed in multilepton $(H \rightarrow WW/ZZ/\tau\tau)$ and $H \rightarrow \gamma\gamma$ channels

Multi-lepton analysis is done in the framework of the SUSY search for natural Higgsino, slepton, etc.

Several SUSY scenarios are probed, also possible to **set limits on FCNH** in this inclusive search:

Higgs boson decay mode	Upper limits on $\mathcal{B}(t \to cH)$		
	Obs.	Exp.	1σ range
$\mathcal{B}(H \rightarrow WW^*) = 23.1\%$	1.6 %	1.6%	(1.0–2.2)%
$\mathcal{B}(\mathrm{H} o au au) = 6.2\%$	7.01%	5.0 %	(3.5–7.7)%
$\mathcal{B}(\mathrm{H} ightarrow \mathrm{ZZ^*}) = 2.9\%$	5.3%	4.11%	(2.9–6.5)%
Combined	1.3%	1.2%	(0.9–1.7)%

MadGraph @LO is used for FCNH generation

Phys. Rev. D 90	CMS-PAS-
032006 (2014)	HIG-13-025
CMS , 20 fb ⁻¹ , 8 TeV	CMS , 20 fb ⁻¹ , 8 TeV

Di-photon analysis developed for the search for 2HDM $H \rightarrow H_{SM}H_{SM}$ and $A \rightarrow ZH_{SM}$

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($B = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ (B = 6.15%)	7.01 %	4.99 %	(3.53–7.74) %
$H \rightarrow ZZ^*$ (B = 2.89 %)	5.31 %	4.11 %	(2.85-6.45) %
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73) %
$H \rightarrow \gamma \gamma$ ($B = 0.23\%$)	0.69%	0.81 %	(0.60–1.17) %
combined multileptons + diphotons	0.56 %	0.65 %	(0.46–0.94) %

Combination of results

 $\kappa_{qHt} < 0.14$ BR(t \rightarrow Hq) < 0.56 %

JHEP 1209 (2012) 139 ATLAS, 2 fb⁻¹, 7 TeV

Reconstructed top candidate mass

Event signature: exactly three isolated leptons, missing E_T, at least two jets

Analysis is performed in the channels with 3 tight lepton (**3ID**) and 2 tight leptons+ 1 track-lepton (**2ID+TL**)

Fake lepton background is evaluated with a data-driven method: scale factor in **3ID** and fake matrix method in **2ID+TL** Main background: WZ/ZZ+jets,

fakes, Z+jets

Additional requirement of a presence of b jet for 2ID +TL channel

Events are **tested** for consistency with ttbar \rightarrow WbZq process by $\chi 2$ minimisation Limits extracted using binned likelihood fit

channel	observed	(-1σ)	expected	$(+1\sigma)$
3ID	0.81%	0.63%	0.95%	1.4%
2ID+TL	3.2%	2.15%	3.31%	4.9%
Combination	0.73%	0.61%	0.93%	1.4%

Input variables for MVA

Variable	Definition		972 $1500 0090/1$ 1			
<i>m</i> _T (top)	Transverse mass of	of the reconstructed top quark	$\frac{a1X11.1009.0089411}{ATT.AS 20 \text{ fb}^{-1} 8 \text{ TeV}}$			
p_{T}^{ℓ}	Transverse mome	ntum of the charged lepton				
$\Delta R(\mathrm{top},\ell)$	Distance in the η lepton	$-\phi$ plane between the reconstruction	cted top quark and the charged			
$p_{\rm T}^{b-{\rm jet}}$	Transverse mome	ntum of the <i>b</i> -tagged jet				
$\Delta \phi$ (top, <i>b</i> -jet)	Difference in azin	nuth between the reconstructed to	p quark and the <i>b</i> -tagged jet			
$\cos\theta(\ell, b\text{-jet})$	Opening angle of	the three-vectors between the cha	rged lepton and the <i>b</i> -tagged jet			
q^ℓ	Charge of the lept	on				
$m_{\rm T}(W)$	W-boson transver	se mass ont				
η^ℓ	Pseudorapidity of	the charged lepton				
$\Delta \phi(\mathrm{top}, W)$	Difference in azin	nuth between the reconstructed top	p quark and the W boson			
$\Delta R(\text{top}, b\text{-jet})$	Distance in the η -	ϕ plane between the reconstructed	d top quark and the <i>b</i> -tagged jet			
$\eta^{\mathrm{top}}_{}$	Pseudorapidity of	the reconstructed top quark	 reconstructed top-quark mass, 			
p_{T}^{W}	Transverse mome	ntum of the W boson	• $\Delta \varphi(l_W - b)$, azimuthal angle betw candidate,	veen the	lepton from the W candidate and	the b-jet
			 <i>q</i> η , with <i>q</i> and η the electric ch respectively, 	arge and	the pseudorapidity of the W ca	ndidate,
			• p _T of the Z boson candidate,			
ton transvers	se momentum,		• η of the <i>Z</i> boson candidate,		CMS-PAS-TOP-12-021	
transverser	nomentum	CMS-PAS-TOP-14-003	 jet multiplicity, 		CMS, 5 fb ⁻¹ , 7 TeV	
, transverse i	nomentum,	CMS 19 fb ⁻¹ 8 TeV	 b-tagged jet multiplicity, 			
on transverse	momentum.					

- angular separation between the photon and the muon (ΔR (
- angular separation between the photon and the b-jet ($\Delta R(b)$
- CSV discriminant value for the b-tagged jet,
- jet multiplicity,
- cosine of the angle between the reconstructed top quark and the photon,

γqt

- $\Delta \varphi(Z E_T)$, azimuthal angle between the Z candidate and the direction of the E_T vector,
- CSV b-tagging discriminator,
- η of the leading jet,
- $\Delta \varphi(l_W Z)$, azimuthal angle between the lepton from the W candidate and the Z candidate,

Zqt

H→WW/ZZ/ττ channel

Event signature: three or two same-sign leptons, one b jet, missing E_T , ≥ 2 jets

×10[°]

PYTHIA6 @LO

CMS Preliminary

300

250

[200 W^{III} [Ge//c²]

100

50

Background: WZ+jets, ttbar+V (trilepton), fake leptons, charge mis-ID (same-sign dilepton)

