3rd Single Top Workshop Strasbourg 2-3 June 2016

The future of Top Physics measurements: why - what and how well?

Patrizia Azzi - INFN Padova

thanking all my colleagues whose slides I have shamelessy stolen: M. Vos, MLM, M. Selvaggi, B. Fuks, M. Najafabadi

how is top physics doing now?

- Tevatron and LHC experiments have shown that precision top physics can be achieved at a hadron collider:
 - a true top factory
 - very pure samples
 - impressive results
 - trampoline for BSM
- top measurements now a « standard candle » for calibration: jet energy scale and b-tagging efficiencies!

• LHC-Run2 challenge: profit of the higher CM energy without suffering of the harsher running conditions. work in progress!

why? (1)

 In absence of New Physics the m_{top} vs m_W plot would look like this:

why? (2)

• top mass can tell us the fate of the Universe

why? (3)

- top as a portal to new physics:
 - rare decays and FCNC processes
 - top (anomalous) couplings
 - indirect effects from loop contributions
 - precision study of kinematic properties
 - associated production with other objects (i.e. tt+Z/ W/H/DM etc)
 - resonances or other new particles decaying in tt
- standing on the shoulder of LHC-Run2 results for all the new physics connections!

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

What ? (the shopping list)

- Mass (various reconstruction methods) & It
- couplings: λ_t , g_{tWb} , $g_{Ztt/\gamma tt}$
- rare decays & FCNC
- asymmetries
- measurements with single top
- tops in the initial state (top_{PDF})
- physics with/of (hyper-)boosted tops

idea is to identify which future machines would satisfy the requirements to perform the desired studies and achieve the needed precision

The future colliders

ILC(Japan)

CLIC(CERN)

CEPC-SPPC(China)

top@HL-LHC

Large number of tops @ LHC, 10x more @ HL-LHC !

HL-LHC is great laboratory for doing high precision top physics 4

top@FCC-hh

10 ab⁻¹ at 100 TeV imply:

 10^{12} top quarks => 5 10^4 x today

 $=>10^{12}$ W bosons from top decays \Rightarrow rare W decays

=>10¹² b hadrons from top decays (particle/antiparticle tagged)

$$\Rightarrow 10^{11} t \rightarrow W \rightarrow taus \Rightarrow rare decays \tau \rightarrow 3\mu, \mu\gamma, CPV$$

=> few x10¹¹ t \rightarrow W \rightarrow charm hadrons \Rightarrow rare decays D \rightarrow µ⁺µ⁻, ..., CPV

The possibility of detectors dedicated to top physics (more in general, to final states in the 0.1 - 1 TeV region deserves, e.g. for Higgs physics) deserves <u>very</u> serious thinking

9

Future lepton colliders Luminosity

Unprecedented precision: a challenge also to theory expectations

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Which mass to measure? (1)

- INFN Istituto Nazionale di Fisica Nucleare
- The methods that can be employed for the mass reconstruction are characterized by different experimental and theoretical issues and uncertainties:
- « Reconstructed » mass: from a fit of the decay products in the various channels.
 - Most precise way (for now) at <u>hadron colliders</u>. Has the problem of being correlated with the real « pole » mass in a way that brings in significant theoretical uncertainties
 - for the lepton collider case this method can be used above threshold (using ttγ or ttj)
 - at lepton collider could obtain precision of ~80MeV (CLIC study) \sqrt{s} =500 GeV, 500fb-I

	Current		Future	
Center-of-mass energy	7 TeV	13 TeV	14 TeV	14 TeV
	l+jets			
Integrated luminosity	$5\mathrm{fb}^{-1}$	$30\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$	$3000{\rm fb}^{-1}$
Fit calibration	0.06	0.03	0.03	0.03
b-JES	0.61	0.27	0.09	0.03
Residual JES	0.28	0.28	0.2	0.06
Lepton energy scale	0.02	0.02	0.02	0.02
Missing transverse momentum	0.06	0.06	0.06	0.06
Jet energy resolution	0.23	0.23	0.2	0.06
b tagging	0.12	0.06	0.06	0.06
Pileup	0.07	0.07	0.07	0.07
Non-tt background	0.13	0.06	0.06	0.06
Parton distribution functions	0.07	0.04	0.04	0.04
Renormalization and factorization scales	0.24	0.12	0.12	0.06
ME-PS matching threshold	0.18	0.09	0.09	0.06
Underlying event	0.15	0.15	0.15	0.06
Color reconnection effects	0.54	0.27	0.2	0.06
Systematic	0.98	0.60	0.44	0.20
Statistical	0.43	0.15	0.05	0.01
Total	1.07	0.62	0.44	0.20

Which mass to measure? (2)

• « threshold scan»: unique at lepton collider.

- easier experimentally, it is a counting experiment
- well connected to a theoretically well defined mass
- Two main systematics on the threshold measurement:
 - Beam energy measurement: need to know beam energy to a fraction of MeV.
 - @ILC: beam energy (30MeV), Lumi spectrum (10MeV), non res contribution(30MeV)
 - @FCC-ee: $\sigma(E_{beam})=0.3$ MeV, from Z pole, or 0.4 MeV (from m(W) and WW)
 - αs : profit of the measurement with Tera-Z (FCC-ee) , or can do a simultaneous 2D fit (ILC)
- With IM top expect ~10-20 MeV stat uncertainty on M(top) at FCC-ee.

Single top background at ILC

Must measure rate and properties of WbWb production. For a precise comparison of data and prediction more theory work is needed!

Behind precision, CERN, feb. 2016

Marcel Vos (marcel.vos@ific.uv.es)

2D fit to m_{top} and α_s

- Additional possibilities:
 - With high precision external as the Top Yukawa coupling can be measured with
 - ~ 7% (stat) precision
 - The top width can also be included in the fit - uncertainties (stat) ~ 30 MeV

arXiv:1310.0563

[MeV]	Δm	theory 1%/3%	Δα	theory 1%/3%	
ILC - 2D Fit	27	5/9	0.0008	0.0009/0.0022	1
CLIC - 2D Fit	34	5/8	0.0009	0.0008/0.0022	
[MeV]	Δm	theory 1%/3%	Qs		
ILC - 1D Fit	18	18/55	21		
CLIC - 1D Fit	22	18/56	20	EPJ C73, 2540	(2013
Perspectives fo	Too Physics at JINC				V

TOP2014, Cannes, October 2014

Frank Simon (fsimon@mpp.mpg.de)

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Contribute from $\Delta \alpha_s$ of ~30MeV per 0.0007 So if $\Delta \alpha_s \sim 0.0002$ this can be divided by 3.

Which mass to measure ? (3)

« Alternative methods »:

- obtain a measurement using sensitive variables that allow to better solve the connection between m_{top}^{MC} and theory one m_{pole} or similar
- right now statistically limited but profit fully of the HL-LHC statistic and theory improvements

	Current		Future	
Center-of-mass energy	7 TeV	13 TeV	14 TeV	14 TeV
Integrated luminosity	$5{\rm fb}^{-1}$	$30\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$	$3000\mathrm{fb}^{-1}$
Jet energy scale and resolution	1.6	0.9	0.5	0.3
Lepton energy scale	0.4	0.2	0.2	0.2
Jet and lepton efficiencies	0.2	0.2	0.2	0.2
Fit range	0.6	0.2	0.2	0.2
Background shape	0.5	0.2	0.1	0.02
QCD effects	0.6	0.3	0.3	0.3
Pileup	0.1	0.1	0.1	0.1
Systematic Systematic	1.9	1.0	0.6	0.5
Statistical	0.9	0.4	0.1	0.04
Total	2.1	1.1	0.6	0.5

M(lb) end-point extrapolation (CMS)

	Ref. analysis	Projections				
CM Energy	$8 { m TeV}$	14 TeV			$33 { m ~TeV}$	$100 { m TeV}$
Luminosity	$20 f b^{-1}$	$100 f b^{-1}$	$300 f b^{-1}$	$3000 f b^{-1}$	$3000 f b^{-1}$	$3000 f b^{-1}$
Theory (GeV)	-	1.5	1.5	1.0	1.0	0.6
Stat. (GeV)	7.00	1.8	1.0	0.3	0.1	0.1
Total	-	2.3	1.8	1.1	1.0	0.6

« J/psi method » extrapolation (CMS)

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Measuring Γ_t

- The top quark width is difficult to measure directly at LHC: however a 2% determination can be useful to constrain new models that predict new particles in top decays.
- At the LHC indirect (new) measurement (CMS: arXiv:1404.2292) from Run I: $\Gamma[t]=1.36 + -0.02$ (stat.) +0.14/-0.11 (syst.) GeV
- Expected improvement down to 5% at HL-LHC
- However <u>direct measurements</u> down to few % possible with top-pair threshold scan at lepton colliders from simultaneous fit of observables (σ_{tt} , A_{fb} and < p@max>) sensitive to m_{top} , Γ_{top} and $\lambda_{top u}$

	# top pairs	∆m _{top}	$\Delta\Gamma_{\mathrm{top}}$	$\Delta \lambda_{top} / \lambda_{top}$
FCCee	1,000,000	10 MeV	12 MeV	13%
ILC	100,000	30 MeV	35 MeV	40%

*from M. Martinez and R. Miquel, Eur. Phys. J. C27, 49 (2003), hep-ph/0207315. ILC

study scaled to FCCee Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Top Yukawa Coupling

ttH at the ILC

The top Yukawa coupling g_{th} can be measured directly

No Higgsstrahlung: c = 0.50 **ILC 1 TeV:** c = 0.52 **CLIC 1.4 TeV:** c = 0.53

About 4% precision on the top Yukawa coupling achievable with 1ab⁻¹

Collider	LHC		ILC	ILC	CLIC
CM Energy [TeV]	14	14	0.5	1.0	1.4
Luminosity $[fb^{-1}]$	300	3000	1000	1000	1500
Top Yukawa coupling κ_t	(14 - 15)%	(7 - 10)%	10%	4%	4%

from arXiv:1311.2028

Talk by Ph.Roloff at TopLC 2015 - Valencia

ILC: arXiv: 1506.05992

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

√s	350 GeV	500 GeV	+1000 GeV
Lnominal	200 fb ⁻¹	+500 fb ⁻¹	+2 ab-1
δh _t /h _t	20%	18%	3.1%

Top Yukawa @threshold

• New calculation, needs to be checked. Good for FCCee

Ishikawa et al., arXiv:1310.0563: consider several observables (σ, A_{FB}, p) two polarizations, 220 fb⁻¹ in total extract properties from simultaneous fit

ΔM ~ 16 MeV
ΔΓ ~ 21 MeV
Δy ~ 4.2 %

Stat. Uncertainty only

Enhancement of 9% ~ independent of √s... no shape information...

Feature is nearly degenerate with α_s

Have to assume very good α_s

NNNLO uncertainty approx. 3%

Theory uncertainty today: 18%

Beneke et al., Nucl. Phys. B899 (2015) 180-193: "Our results show that once theoretical uncertainties are taken into account, it is unlikely that such a high precision [i.e. 4.2%] can be achieved."

Marcel Vos (marcel.vos@ific.uv.es)

19

Top Yukawa @hadron colliders

usually shown in the context of H precision

Top Yukawa @FCChh

At 100 TeV:

- greater dominance of gg initial state w.r.t. $14 \text{ TeV} \Rightarrow \text{ttH closer to ttZ}$
- huge production rates (ttH rate@100 TeV ~ 60 x ttH rate@14 TeV)
- large rate at very high $p_T(H)$ and $p_T(top) \Rightarrow$ effective use of boosted techniques, reduced

combinatorial bg, systematics)

• access to "clean" final states $(H \rightarrow \gamma \gamma, H \rightarrow WW^*)$

Top EWK couplings

Measure 2 observables for 2 beam polarizations:

- x-section
- FB asymmetry

Extract form factors in groups (assuming SM for remaining groups)

Assumptions:

LHC: 14 TeV, 300/fb LC: $\sqrt{s} = 500 \text{ GeV}$, L = 500/fb $P(e^{-}) = +/- 80\%$, $P(e^{+}) = -/+ 30\%$ $\delta\sigma \sim 0.5\%$ (stat. + lumi) $\delta A_{_{FB}} \sim 1.8\%$ (stat., covers systematics?)

Polarization needed to disentangle photon and Z-boson form factors!

Especially for ttZ LC precision is better than existing (model-dependent) limits from top decay, LEP T-parameter, B-factories (full comparison in progress)

Top Electroweak Couplings @FCCee

- Access the separate components from the ttZ and ttγ couplings and possible anomalous contributions from the top decay properties.
- Top polarization information is maximally transferred to its final state via the weak decay
 - the lack of beam polarization is compensated by the final state polarization and by the larger statistics (1.6M top in 3 years)
- Some optimal observable can be defined. In the case of tt->I+jets: the <u>lepton direction</u> <u>and energy.</u>
- main systematics comes from predicted event rate

 target precision at the per-mil level
 no need for high energy runs, far above the threshold: √s=365 GeV is optimal

Accuracy on Top Couplings

LHC (14 TeV, 300 fb⁻¹) ILC(500GeV, 500 fb⁻¹) with polarized beams (ILC-TDR 1306.6352; Amjad et al. 1505.06020) FCC-ee (360GeV, 2.6 ab⁻¹) from lepton angular and energy distributions (Janot 1503.01325) continuous(dashed): from angular and energy distributions of leptons (b-quarks) (Janot, EPS HEP 2015, WhatNext White paper of CSN1)

Analytical results also verified with full simulation analysis in 2015

Foppiani,Pajero

Probing Composite Higgs models

ttZ vector and axial couplings

ttbar + Z LHC 13 TeV, 3000 fb⁻¹ scale+pdfs: ± 15 %

ttbar ILC 500 GeV, 500fb-1 theory 2%

Top chromo magnetic moments (gtt)

Enhance chromoelectric/magnetic contribution by going at p > m,

Strategy:

- use boosted techniques to tag tops and reduce QCD background
- measure $\sigma^{}_{_{\rm tt}}$ (m > 1(2) TeV) to constrain $d^{}_{_{\rm A}}$ and $d^{}_{_{\rm V}}$

gtt @FCChh

⇒ Λ ≳17 TeV

gtWb @LC

- the single top is very interesting for lower energy runs below the tt threshold
 - for FCC-ee could use the run at the Higgs
- Study at ILC (old,2005) for the extraction of gWtb:
 - use the energy scan between $\sqrt{s}=240$ and $\sqrt{s}=350$ for $g_{tWb.}$
 - Expected uncertainty of 2% with 100fb-1 collected at $\sqrt{s}=340$ GeV (if the Γ top is measured at 100 MeV)

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

inclusive rate for e⁺e⁻ ->wbwb

28

gtwb coupling @HL-LHC

gtWb coupling @HL-LHC

	m _{tb} > 2 TeV		s-channel ST	ttbar	dijet
	$\sigma_{\text{fiducial}} \left(\text{fb} \right)$		82 (50) ab	105 (12) ab	750 (80) ab
- c	onservative	Δ	σ/σ _{stat} (300 fb ⁻¹)	$\Delta\sigma/\sigma_{stat}$ (3 ab	, -1 ₎
a	ggressive		68 (43) %	21 (13) %	

Can do better by:

going NLO

include tW channel

Asymmetries

31

- Asymmetries important to study as they are the only place currently where we see deviation from SM.
- LHC not the best place for A_{FB} especially with the energy increase. But new ideas coming in!
- @LeptonColliders: A_{FB} is sensitive to the chiral structure of the ttX vertex. Can be measured with 2% precision (ITeV, ILC polarized) by measuring top production angle and helicity angle. <u>Polarized beams make the difference</u>.

rare decays& FCNC: the gold mine!

expectations from theory

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS
$t \rightarrow Zu$	7×10^{-17}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to Z c$	$1 imes 10^{-14}$	$\le 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\le 10^{-5}$
$t \rightarrow gu$	4×10^{-14}	-	-	$\leq 10^{-7}$	$\leq 10^{-6}$	-
$t \to gc$	$5 imes 10^{-12}$	$\le 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\le 10^{-10}$
$t \rightarrow \gamma u$	$4 imes 10^{-16}$	-	-	$\leq 10^{-8}$	$\leq 10^{-9}$	-
$t\to \gamma c$	$5 imes 10^{-14}$	$\le 10^{-7}$	$\le 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\le 10^{-9}$
$t \to h u$	2×10^{-17}	6×10^{-6}	-	$\leq 10^{-5}$	$\le 10^{-9}$	-
$t \to hc$	$3 imes 10^{-15}$	2×10^{-3}	$\le 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Process	Br Limit	Search	Dataset	Reference
$t \rightarrow Zq$	7×10^{-4}	CMS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	19.5 fb ⁻¹ , 8 TeV	[130]
$t \rightarrow Zq$	7.3×10^{-3}	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	2.1 fb ⁻¹ , 7 TeV	[137]
$t \rightarrow gu$	3.1×10^{-5}	ATLAS $qg \rightarrow t \rightarrow Wb$	14.2 fb ⁻¹ , 8 TeV	[131]
$t \rightarrow gc$	$1.6 imes 10^{-4}$	ATLAS $qg \rightarrow t \rightarrow Wb$	14.2 fb ⁻¹ , 8 TeV	[131]
$t \rightarrow \gamma u$	6.4×10^{-3}	ZEUS $e^{\pm}p \rightarrow (t \text{ or } \bar{t}) + X$	474 pb ⁻¹ , 300 GeV	[134]
$t \rightarrow \gamma q$	3.2×10^{-2}	CDF $t\bar{t} \rightarrow Wb + \gamma q$	110 pb ⁻¹ , 1.8 TeV	[132]
$t \rightarrow hq$	8.3×10^{-3}	ATLAS $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$	20 fb ⁻¹ , 8 TeV	[135]
$t \rightarrow hq$	2.7×10^{-2}	$CMS^{\bullet} t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell qX$	5 fb ⁻¹ , 7 TeV	[136]
→ invis.	9×10^{-2}	$CDF t\bar{t} \rightarrow Wb$	1.9 fb ⁻¹ , 1.96 TeV	[133]

current limits

Process Br Limit Search Dataset Reference ATLAS $t\bar{t} \rightarrow Wb + Zg \rightarrow \ell\nu b + \ell\ell g$ $t \rightarrow Zq$ 2.2×10^{-4} 300 fb⁻¹, 14 TeV [140] $t \rightarrow Zq$ 7×10^{-5} ATLAS $t\bar{t} \rightarrow Wb + Zg \rightarrow \ell\nu b + \ell\ell g$ 3000 fb⁻¹, 14 TeV [140] $5(2) \times 10^{-4}$ ILC single top, γ_{μ} ($\sigma_{\mu\nu}$) 500 fb⁻¹, 250 GeV $t \rightarrow Zq$ Extrap. $t \rightarrow Zq$ $1.5(1.1) \times 10^{-4(-5)}$ ILC single top, γ_{μ} ($\sigma_{\mu\nu}$) 500 fb⁻¹, 500 GeV [141]500 fb⁻¹, 500 GeV $1.6(1.7) \times 10^{-3}$ ILC $t\bar{t}$, γ_{μ} ($\sigma_{\mu\nu}$) $t \rightarrow Zq$ [141] $t \rightarrow \gamma q$ 8×10^{-5} ATLAS $t\bar{t} \rightarrow Wb + \gamma q$ 300 fb⁻¹, 14 TeV [140]ATLAS $t\bar{t} \rightarrow Wb + \gamma q$ 3000 fb⁻¹, 14 TeV 2.5×10^{-5} $t \rightarrow \gamma q$ [140] 6×10^{-5} 500 fb⁻¹, 250 GeV ILC single top Extrap. $t \rightarrow \gamma q$ 6.4×10^{-6} 500 fb⁻¹, 500 GeV ILC single top $t \rightarrow \gamma q$ [141] 1.0×10^{-4} ILC tt 500 fb⁻¹, 500 GeV [141] $t \rightarrow \gamma q$ ATLAS $qg \rightarrow t \rightarrow Wb$ 4×10^{-6} 300 fb⁻¹, 14 TeV $t \rightarrow gu$ Extrap. 1×10^{-6} ATLAS $qg \rightarrow t \rightarrow Wb$ 3000 fb⁻¹, 14 TeV Extrap. $t \rightarrow gu$ 300 fb⁻¹, 14 TeV 1×10^{-5} ATLAS $qg \rightarrow t \rightarrow Wb$ $t \rightarrow gc$ Extrap. ATLAS $qg \rightarrow t \rightarrow Wb$ 3000 fb⁻¹, 14 TeV 4×10^{-6} $t \rightarrow gc$ Extrap. 2×10^{-3} LHC $t\bar{t} \rightarrow Wb + hg \rightarrow \ell\nu b + \ell\ell gX$ $t \rightarrow hq$ 300 fb⁻¹, 14 TeV Extrap. LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell qX$ 3000 fb⁻¹, 14 TeV $t \rightarrow hg$ 5×10^{-4} Extrap. LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$ 300 fb⁻¹, 14 TeV $t \rightarrow hg$ 5×10^{-4} Extrap. LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$ 3000 fb⁻¹, 14 TeV 2×10^{-4} $t \rightarrow hq$ Extrap.

extrapolations

t->Zq, γq, Zc

rare decays seem the best option for discoveries in top physics profiting of the large statistics of future machines

FCNC @FCC-ee

-Flavor-changing neutral current (FCNC) interactions: Transition from a quark with flavor-X and charge-Q to another quark of flavor-Y but with the same charge-Q.

For example: $b \rightarrow s \gamma$, $t \rightarrow u \gamma$, $t \rightarrow uZ$...

-FCNC are forbidden at tree level and only allowed via higher order corrections such as penguin diagrams and strongly suppressed: due to GIM mechanism and smallness of the related CKM matrix elements.

-Top decays through FCNC are enhanced in many models beyond the SM. -The enhancement mechanism depends on the model. It can be done via weaker GIM cancellation by new particles in loop corrections.

Phys. Rev. D 44, 1473 (1991); Phys. Lett. B 435, 401 (1998).

Decay mode	2HDM (FV)	MSSM	ED: RS
$Br(t {\textbf{\textbf{-}}} \gamma {\textbf{+}} c)$	≤ 10 ⁻⁷	≤ 10 ⁻⁸	≤ 10 ⁻⁹
$Br(t \rightarrow Z_{+c})$	≤ 10 ⁻⁶	≤ 10 ⁻⁶	$\leq 10^{-5}$
$Br(t \rightarrow g+c)$	≤ 10 ⁻⁴	≤ 10 ⁻⁷	≤ 10 ⁻¹⁰
	arXiv:1311.2	028	

FCNC @FCC-ee

Exclusion limits at 95% CL

Full hadronic	√s (GeV)	240, 100 fb ⁻¹	240, 10 ab-1
channel	$Br(t \ge q \gamma)$	1.43x10-4	3.17x10 ⁻⁵
	Br(t->qZ)($\sigma_{\mu\nu}$)	1.86x10-4	4.12x10 ⁻⁵
	Br(t->qZ)(γ_{μ})	3.78x10 ⁻⁴	8.22x10 ⁻⁵

S.Biswas, F.Margaroli, B. Mele; More details can be found in talk by B. Mele: http://indico.cern.ch/event/438866/session/10/contribution/254/stachments/1256224/1854541/FCCW_Mele.pdf

FCNC @ILC

F. Zarnecki: Measurement of FCNC top decays at ILC/CLIC studied at parton level.

Top workshop Valencia July 15 https://pdite.cem.ch.event/381148/session/5/contribution/4/attachm.ents/759420/1674930/top/c2015.pdf

Expected limits on BR(t \rightarrow ch) × BR(h \rightarrow bb⁻) ~ 10⁻⁵ depending on the energy, luminosity and detector parameters in a H-20 LC full program

Order of magnitude improvement wrt Snowmass expectation for LHC + lumi upgrade

FCNC @HL-LHC

ATLAS-PHYS-PUB-2013-012 B(t-)

• CMS-FTR-13-016

< 0.05 %	$\mathcal{B}(t \to Zq)$	19.5 fb ⁻¹ @ 8 TeV	300 fb ⁻¹ @ 14 TeV	3000 fb ⁻¹ @ 14 TeV
Phys. Rev. Lett. 112 (2014) 171802	Exp. bkg. yield	3.2	26.8	268
	Expected limit	< 0.10%	< 0.027%	< 0.010%
	1σ range	0.06 - 0.13%	0.018 - 0.038%	0.007 - 0.014%
	2σ range	0.05 - 0.20%	0.013 - 0.051%	0.005 - 0.020%

u,c

single top @HC

- @HL-LHC: Important to constrain new physics from the measurement of the three different production modes
- @100 TeV t-channel is x20 and s-channel x10,Wt x35! s-channel becomes 1% of the total. Important to consider the WWbb final state.

top@I00TeV - production

Dominance of gg initial state:

- for all t-tbar masses in inclusive production
- up to $M_{tt} \sim 15 \text{ TeV}$ for very central production

top@100TeV - gluon splitting

Dominance of $g \rightarrow tt$ at high p_T

top-merged jets

possible impact on top tagging at high pt ?

•
$$t \rightarrow cg, t \rightarrow ug$$

 Monotops: used to search for DM production. At LHC need FV coupling. Due to large top PDF @100TeV might not need that anymore.

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Conclusions

- very quick excursus into the multitude of top physics studies offered by the new machines on the market
- the top quark is a pillar of the SM. A precise measurement of its parameters is essential for a better knowledge of the SM but also opens the possibility to be sensitive to new physics processes.
- theory has to advance as much as the experiments in order to fully profit of the data collected with these new machines

looking beyond out current data is a necessary excercise to push the potential of our current analyses and to guarantee a prosperous exploration of the high energy frontier

Patrizia Azzi @ 3rd Single Top Workshop, Strasbourg

Summary of top properties determinations at ILC/FCC-ee

ILC: arXiv: 1506.05992

Parameter	Initial Phase	Full Data Set	units
m_t	50	50	$MeV(m_t(1S))$
Γ_t	60	60	MeV
g_L^γ	0.8	0.6	% 🕇
g_R^γ	0.8	0.6	% relative
g_L^Z	1.0	0.6	% precision
g_R^Z	2.5	1.0	%↓
F_2^γ	0.001	0.001	absolute
F_2^Z	0.002	0.002	absolute

 m_t , Γ_t from runs at threshold \Rightarrow ultimately dominated by TH syst. comparable results at

syst, comparable results at FCC-ee

FCC-ee: arXiv:1503.01325

2.4 ab⁻¹ at 365 GeV

Absolute Precision on	F_{1V}^{γ}	F_{1V}^Z	F_{1A}^{γ}	F^Z_{1A}
Only three $F_{1V,A}^X$	1.210^{-3}	2.910^{-3}	0.010^{-2}	2.210^{-2}
All four $F_{1V,A}^X$	1.210^{-3}	3.010^{-3}	1.310^{-2}	2.410^{-2}
$\sqrt{s} = 500 \mathrm{GeV}$	5.510^{-3}	1.510^{-2}	1.010^{-2}	2.210^{-2}