

New and upcoming features in TMVA

Lorenzo Moneta (CERN)

Omar Zapata (Metropolitan Institute Of Technology & University of Antioquia)

Sergei Gleyzer (University of Florida & CERN)

outline

- Present
 - Current machine learning tools in ROOT
 - DataLoader
 - PyMVA
 - RMVA
 - Variable Importance
 - Cross validation
 - Deep Learning

- In Progress or Future
 - TMVA refactoring
 - TMVAGui
 - ROOTBooks
 - Cross validation
 - Deep learning
 - Parallelization
 - Memory and Test Suite
 - Additional features

Future of TMVA document

- Flexibility
 - The code should be made more modular In Progress
 - The core should be more flexible, allowing for decoupling for datasets/methods/variables

 Done
 - Pause and resume training Not started
- Core
 - Interfaces for R and Python Done
 - GPU support
 Not started
- Computational Performance
 - Core redesigned for improved computational performance In Progress
 - Dataset I/O should be revisited
 - Alternative input file types (Example: HDF5)
 Not started
- Desired Features
 - Cross -validation
 In Progress
 - Additional information for Analyzer (Variable importance)
 - Parallelization
 In Progress

see (Draft version 16/09/2015) http://iml.cern.ch/tiki-download_file.php?fileId=1

Present

DataLoader

- TMVA DataLoader is a class that allows greater flexibility in working with datasets
 - Connects features with classifiers
 - Works with TTrees but extendable to other types
 - data frames
 - vectors

PyMVA

PyMVA is a set of TMVA plugins based on python api that allows new methods of classification and regression calling Python's packages.

RMVA

RMVA is a set of plugins for TMVA package based on ROOTR that allows new methods of classification and regression calling R's packages.

Feature Importance

Ranks the importance of features based on contribution to classifier performance

$$FI(X_i) = \sum_{S \subseteq V: X_i \in S} F(S) \times W_{X_i}(S)$$

- Feature set {V}
- Feature subset {S}
- Classifier Performance F(S)
- A stochastic algorithm independent of classifier choice

Cross Validation

- Currently performed with external scripts with TMVA
- Implemented by Thomas Stevenson and Adrian Bevan (see ACAT 2016 talk)

https://indico.cern.

ch/event/397113/session/16/contribution/147/attachments/1214583/1 773051/SVM_and_Generalisation_ACAT.pdf

Deep Learning

- Deep learning classes (plugin) in git branch https://github.com/root-mirror/root/pull/104
- Contains recent developments in the field
 - Weight initialization [Gerlot]
 - SGD
 - Hogwild style multithreading
 - drop-out
 - momentum
 - Multithreaded training
- Written by Peter Speckmayer
 - Undergoing final tests/evaluation.

Deep Learning Algorithms

SVM

Additional functionality for SVMs includes:

- Multi-gaussian, product and sum kernel functions added, as well as polynomial kernel function re-enabled.
- Parameter optimisation for kernel parameters and cost added following the implementation for BDT parameter optimisation.
- Can specify the parameters to be optimised and the range over which they are optimised.
- Calculation of loss functions, though not currently used.
- Weighting of the cost parameter to the relative signal and background dataset sizes, as to not bias the SVM training if one dataset is significantly larger than the other.
- Also return of map of optimised parameters from the tmva factory to allow for use in external program.

see next talk by Thomas

https://indico.cern.

ch/event/397113/session/16/contribution/147/attachments/1214583/1773051/SVM_and_Generalisation_ACAT.pdf

Features In Progress

Upcoming TMVA

- Currently TMVA is undergoing important updates for incoming features
 - Removal of static variables from the code to support parallelization and avoid concurrency problems.
 - Creation of lightweight constructor that does not save results in ROOT file.
 - Separation of classification and regression classes
 - Faster classification and regression and statistical experiments like cross validation, parameters tuning, dimensionality reduction, hyperparameter optimization, etc..

DataLoader

 TMVA DataLoader will support reading .csv, HDF5, JSON, Custom Serialization Flles and SQL.

ROOT Books

- Additional integration with ROOTBooks
 - ROC plots
 - Classifier structure visualizations
 - Plots on demand
 - Python support

TMVAGui

In the new design TMVAGui also needs to be updated:

- Integration with ROOTBooks
- Visualization of multiple datasets

Cross Validation

Fully integrated into TMVA

- New class TMVA::CrossValidation
- Will support parallel execution
- Optional hyper parameter tuning.

Deep Learning

- Additional deep learning plugins
 - packages with GPU support like darch
 - using PyMVA and RMVA.
 - restricted boltzmann machines

Deep Learning Algorithms

Parallelization

Parallelize TMVA using different approaches.

 Parallelize multiple methods booked into factory when Train/Test is called.

Internally parallelize methods.

Technologies to be implemented

- ROOT MultiProc
- Threads and GPU support.

Memory and Tests Suite

- Memory optimization
 - Manipulation of multiple datasets
 - Data from multiple file types
 - Valgrind scripts for memory leaks detection
 - Well implemented memory use in parallelization:
 - SIMD (Single instruction, multiple data)
 - MISD (multiple instruction, single data)
 - MIMD (multiple instruction, multiple data)
- Classes for tests suite integrated to ROOT
 - Using CppUnit
 - Using macros for stress tests.

Additional features

- Gaussian processes for machine learning. http://www.gaussianprocess.org/gpml/
- Reduced support vector machines
- Parallel random grid search.
- Update documentation with doxygen.
- XML converter (see talk by lurii)

More Information

Websites

http://root.cern.ch

http://oproject.org

http://iml.cern.ch

Thanks

