Compressed Baryonic Matter experiment at FAIR

Subhasis Chattopadhyay, VECC-Kolkata & BI-Kolkata

Exploring the QCD phase diagram

At very high temperature:

- N of baryons ~ N of antibaryons Situation similar to early universe
- L-QCD finds crossover transition between hadronic matter and Quark-Gluon Plasma
- Experiments: ALICE, ATLAS, CMS at LHC STAR, PHENIX at RHIC

Exploring the QCD phase diagram

Courtesy of K. Fukushima & T. Hatsuda

Baryon Chemical Potential $\mu_{\rm B}$

At high baryon density:

- N of baryons >> N of antibaryons Densities like in neutron star cores
 - Densities like in neutron star co
- L-QCD not (yet) applicable
- Models predict first order phase transition with mixed or exotic phases
- Experiments: BES at RHIC, NA61 at CERN SPS, CBM at FAIR, NICA at JINR, J-PARC

Time line

Figure 3: High level schedule of the FAIR MSV. The arrows indicate the construction/installation periods of: buildings (orange), technical infrastructure (orange-white), accelerator systems (blue) and experiments (purple). The arrows marked in grey-white indicate the opportunities for intermediate experimental programs exploiting FAIR detector components at the GSI accelerators.

Baryon densities in central Au+Au collisions

I.C. Arsene et al., Phys. Rev. C 75, 24902 (2007)

5 A GeV

10 A GeV

3-fluid

PHSD

UrQMD

QGSM

GiBUU

15

3-fluid PHSD

UrQMD QGSM

GiBUU

2.0

1.5

10

Quark matter in massive neutron stars?

Messengers from the dense fireball: **CBM** at FAIR

UrQMD transport calculation Au+Au 10.7 A GeV π, Κ, Λ, ...

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

resonance decays

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

Ξ-, Ω-, φ

 $\rho \rightarrow e^+e^-, \mu^+\mu^-$

 $\overline{p}, \overline{\Lambda}, \Xi^+, \Omega^+$

Experimental challenges

Experiments exploring dense QCD matter

Experimental requirements

10⁵ - 10⁷ Au+Au reactions/sec determination of displaced vertices ($\sigma \approx 50 \ \mu m$) identification of leptons and hadrons fast and radiation hard detectors and FEE free-streaming readout electronics high speed data acquisition and high performance computer farm for online event selection 4-D event reconstruction

Experimental requirements

Time of Flight

Hyperons in CBM at SIS100

Example: Au+Au at 8 A GeV, 10⁶ central collisions (UrQMD)

- In addition:
 K*,Λ*,Σ*,Ξ*,Ω*
- Event rate: 100 kHz to 1 MHz

Hypernuclei in CBM at SIS100 Au+Au at 10 A GeV

Open charm in CBM at SIS100

- Charm production cross sections at threshold energies
- Charm propagation in cold nuclear matter

Open charm in CBM at SIS100

- Charm production and propagation in hot nuclear matter
- D multiplicities from thermal model (V. Vovchenko)
- 2 weeks Ni + Ni at 15 A GeV: 260 \overline{D}^0 , 45 D^0

Electrons in CBM at SIS100

Muons in CBM at SIS100

Simulation: Signal yields from HSD, Background from UrQMD

Hidden charm in CBM at SIS100

1000 J/ψ in 10¹² events (1 day) (multiplicity from HSD)

central Au+Au at 10 A GeV

1000 J/ ψ in 10¹³ events (10 days) (multiplicity from HSD)

CBM Technical Design Reports

			Technical Design Report	Technical Design Report
	Project	TDR Status	for the CBM	for the CBM
1	Magnet	approved	Superconducting Dipole	Ring Imaging Cherenkov (RICH) Detector
2	STS	approved	The CBM Collaboration	Aatter E
3	RICH	approved	yonic A	ayonic A
4	TOF	approved	essed Ba	
5	MuCh	approved	November 2012 Control	April 2013
6	HADES ECAL	approved	Technical Design Report	. Technical Design Report
7	PSD	approved	for the CBM	for the CBM
8	MVD	submission 2016	Projectile Spectator Detector (PSD) The CBM Collaboration The CBM Collaboration	Muon Chamber (MUCH) The CBM Collaboration
9	DAQ/FLES	submission 2016	Baryonic Mat	Baryonic Matt
10	TRD	submission 2016	March 2013	December 2013
11	ECAL	submission		20

Neutronflux in the CBM cave: 2 month of 10⁹ Au ions at 25 A GeV, 1% interaction Au target

Neutronen (cm-2 / Jahr)

Z (cm)

CBM Technical Developments

SC Magnet: JINR Dubna Micro-Vertex

Detector:

MRPC ToF Wall: Beijing, Bucharest, Darmstadt, Frankfurt, Hefei, Heidelberg, Moscow, Rossendorf,

Transition Radiation Detector: Bucharest, Dubna,

RICH Detector: Darmstadt, Giessen, Pusan,

Forward calorimeter:

Silicon Tracking System: Darmstadt, Dubna, Krakow, Kiev, Kharkov, Moscow, St. Petersburg,

Muon detector: Kolkata + 13 Indian Inst., Gatchina, Dubna

DAQ and online event selection: Darmstadt, Frankfurt, Heidelberg, Kharagpur, Warsaw

Development of the Silicon Tracking System for CBM

STS in thermal enclosure (-10°C)

Detector layers: Low-weight carbon structures

Sensor development: Double-sided microstrips 60 µm pitch, 300 µm thick, readout via ultra-thin micro-cables

High-rate MRPCs for the CBM TOF detector

Requirements:

- rate capability up to 20 kHz/cm²
- time resolution 80 ps
- active area ~100 m²

Prototype detector: 10-gap RPC with low-resistivity glass

Status experiment preparation

DAQ, First Level Event Selection

- Funding: German and Polish contributions
- Prototype built and tested, final HPC cluster: GreenIT cube
- Participating institutes: Univ. Frankfurt, FIAS, GSI, KIT Karlsruhe, IIT Kharagpur, Warsaw UT, ZIB Berlin

CBM First Level Event Selection (FLES)

The FLES package is vectorized, parallelized, portable and scalable

Example:

Full track reconstruction including KF particle analysis of multi-strange (anti) hyperons for min. bias Au+Au collisions at 25 A GeV.

CBM Front-End Electronic development

Double sided silicon strip readout: Prototype FEB with 4 n-XYTER

n-XYTER FEB for gas det. prototyping

evaluative STS FEB Future FEBs: 3-d assembly

Next generation ASICs

SPADIC (TRD)

Technical Design Report for the CBM

Muon Chamber (MUCH)

The CBM Collaboration

December 2013

Technical Design Report Submission for review: 21/10/13 Approved: 26th January 2015

> Theses: Arun Prakash, BHU Partha Bhaduri, VECC Husnud, AMU Shabir, KU Kalyan Dey, GU Jogender Saini, VECC Swagata Mondal, VECC

Much setup (SIS100/300)

MUCH	Carbon	No. of	total	No. of		
version	absorber	iron	thickness	tracking	Type of	Physics
		absorber	of	chamber	Chambers	case
		slices	iron absorber	triplets		
SIS100-A	60 cm	2	40 cm	3	2 GEM,	LMVM
					1 Straw	$\mathbf{A} + \mathbf{A}$
					tube	4-6 AGeV
SIS100-B	$60 \mathrm{cm}$	3	70 cm	4	2 GEM,	LMVM
					2 Straw	$\mathbf{A} + \mathbf{A}$
					tubes	8-10 AGeV
SIS100-C	$60 \mathrm{cm}$	4	170 cm	5	2 GEM	$\mathbf{p} + \mathbf{A}$
					2 Straw tubes	(J/ψ)
					1 TRD	29 GeV
SIS300-A	$60 \mathrm{cm}$	5	105 cm	5		LMVM
					2 GEM,	(A + A)
					2 Straw tubes,	15-25
					1 TRD	AGeV
SIS300-B	$60 \mathrm{cm}$	6	205 cm	6	2 GEM,	J/ψ
					2 Straw tubes	(A + A)
					1 Hybrid GEM,	10-35
					1 TRD	AGeV

Table 2.1: Various MUCH configurations in SIS100 and SIS300

Facility for Antiproton & Ion Research

- 10⁹/s C, Ca, ... up to 14 GeV/u
- 10¹¹/s p up to 29 GeV

FAIR phase 1 FAIR phase 2

The CBM Collaboration: 60 institutions, 530 members

Croatia: Split Univ. China: CCNU Wuhan Tsinghua Univ. USTC Hefei CTGU Yichang Czech Republic: CAS, Rez Techn. Univ.Prague France:

IPHC Strasbourg Hungary: KFKI Budapest

Budapest Univ.

Germany: Darmstadt TU FAIR Frankfurt Univ. IKF Frankfurt Univ. FIAS Frankfurt Univ. ICS GSI Darmstadt Giessen Univ. Heidelberg Univ. P.I. Heidelberg Univ. ZITI HZ Dresden-Rossendorf **KIT Karlsruhe** Münster Univ. Tübingen Univ. Wuppertal Univ. **ZIB Berlin**

India:

Aligarh Muslim Univ. Bose Inst. Kolkata Panjab Univ. Rajasthan Univ. Univ. of Jammu Univ. of Kashmir Univ. of Calcutta B.H. Univ. Varanasi VECC Kolkata IOP Bhubaneswar IIT Kharagpur IIT Indore Gauhati Univ. Korea: Pusan Nat. Univ.

Poland:

AGH Krakow Jag. Univ. Krakow Silesia Univ. Katowice Warsaw Univ. Warsaw TU

Romania:

NIPNE Bucharest Univ. Bucharest Russia: IHEP Protvino INR Troitzk ITEP Moscow Kurchatov Inst., Moscow LHEP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk Univ. PNPI Gatchina SINP MSU, Moscow St. Petersburg P. Univ. Ioffe Phys.-Tech. Inst. St. Pb.

Ukraine:

T. Shevchenko Univ. Kiev Kiev Inst. Nucl. Research

Tests of silicon micro-strip and GEM detectors with 3 GeV protons at COSY Dec. 2011

Summary

- The experiments at FAIR address fundamental questions in hadron, nuclear, atomic and plasma physics, and explore new frontiers in material and bio physics.
- The unique features of the FAIR accelerators are high-intensity primary and secondary beams.
- CBM scientific program at SIS100: Exploration of the QCD phase diagram in the region of neutron star core densities \rightarrow large discovery potential.

First measurements with CBM:

High-precision multi-differential measurements of hadrons incl. multistrange hyperons, hypernuclei and dileptons for different beam energies and collision systems \rightarrow terra incognita.

Significant involvement of Indian researchers

A few general comments:

- Strong mandate is to build things within the country
- We have a fixed amount in FAIR-India fund for experiments
- The amount is STRICTLY for production of detectors and not for R&D
- If you can manage production and R&D it is upto the project co-ordinator

Immediate steps towards funding:

- 1. PC has to give total scope of the project within the approved funding
- 2. Breakup of collaborators and their fund share
- 3. Funding profile (phases, different heads etc)
- 4. BI-IFCC has prepared an MoU (some of you have seen that), that will be sent to collaborating institutions.
- 5. To be reviewed once by the ECE and then funds will be released
- 6. There will be strict monitoring on utilization
- 7. Student is not under the scope of project, this is from BI-IFCC student pool

What I will expect from this meeting?

- Detailed discussions on each detector project, critical review, modifications (*There should be critical review by othe collaborations, like Nustar for CBM and vice versa*)
- Explore and identify the scope of intra-experiment collaboration (in India)
- Can we have items common and go to the industry?
- A regular mailing list for discussions
- Collaboration in simulation (Fairroot)
- Collaboration in Electronics (FPGA?)
- We should have ONE FAIR collaboration

Let's have a summary discussion at the end

Strangeness at CBM

Observables

Excitation function of yields, spectra, and collective flow of (multi-) strange baryons in heavy-ion collisions

Physics case

- Nuclear matter equation-of-state at extremely high net-baryon densities
- Search for quarkyonic matter or for phase coexistence

Transport codes:

Multi-strange hyperon production via multistep strangeness exchange reactions:

Hyperons (s quarks):

1. pp \rightarrow K⁺ Λ^{0} p, pp \rightarrow K⁺K⁻pp, 2. p Λ^{0} \rightarrow K⁺ Ξ^{-} p, $\pi\Lambda^{0}$ \rightarrow K⁺ Ξ^{-} π ,

3. $\Lambda^0 \Lambda^0 \rightarrow \Xi^- p$, $\Lambda^0 K^- \rightarrow \Xi^- \pi^0$

4. $\Lambda^0 \Xi^- \rightarrow \Omega^- n$, $\Xi^- K^- \rightarrow \Omega^- \pi^-$

Antihyperons (anti-s quarks): 1. $\Lambda^{0-}K^{+} \rightarrow \Xi^{+}\pi^{0}$, 2. $\Xi^{+}K^{+} \rightarrow \Omega^{+}\pi^{+}$.

HYPQGSM calculations , K. Gudima et al.

Gas Electron Multiplier (GEM) and its working principle

- Active medium is a gas mixture.
- electron multiplication takes place in holes of two copper foils separated by kapton
- Amplification may use 2 or 3 stages.

--- a 50 micron polyimide foil with a 5 micron Cu layer deposited on both sides of polyimide

Multi GEM configurations..

Cascaded GEMs achieve larger gains and safer operation in harsh environments

-- reduced spark probability in a multiGEM configuration

The Final cleaning --- ultra-sonic bath

Hyperons in CBM at SIS100

Au+Au at 10 A GeV 5.10⁶ central collisions (UrQMD)

missing mass analysis:

Reconstruction of a multistrange di-baryon

Signal: strange dibaryon $(\Xi^0 \Lambda)_b \rightarrow \Lambda \Lambda$ (ct=3cm) M= 10⁻⁶, BR = 5% Background: central Au+Au collision 32 Λ per central event 11 Λ reconstructable

