NuSTAR Program at FAIR & Indian Contribution

Rudrajyoti Palit Tata Institute of Fundamental Research

Physics of exotic nuclei

Neutron number —

J. Dobaczewski et al. Prog. In Part. and Nucl. Phys. 59, 432 (2007)

Asymmetry in N & Z ratio, Fermi energy, density

Low density neutron matter

New Correlations

Tuning of certain terms in effective NN interaction

Novel decay modes

Nuclear Structure at extreme IsoSpin

What are the limits for existence of nuclei?

Where are the proton and neutron drip lines situated?

Where does the nuclear chart end?

How does the nuclear force depend on varying proton-to-neutron ratios?

What is the isospin dependence of the spin-orbit force?

How does shell structure change far away from stability?

How to explain collective phenomena from individual motion?

What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system?

How are complex nuclei built from their basic constituents?

What is the effective nucleon-nucleon interaction?

How does QCD constrain its parameters?

Which are the nuclei relevant for astrophysical processes and what are their properties?

What is the origin of the heavy elements?

NUSTAR Collaboration

Major Objective of FAIR

Radioactive Ion Beams

Low Energy Branch

High Energy Branch

Kinematically Complete Detection

Different set-ups within NUSTAR asking similar questions

charge

density

distribution

matter radii

absorption

from

matter

low

densitiv

distributions

momentum

transfers

high-

resolution

spectroscopy

nuclear

periphery

mean square

radii

Charge

Single-

particle

structure

radii

Matter radii interaction x- matter radii

complete

neutron

detection

kinematics.

sect

high

resolution.

momentum

angular

Experimental Opportunities

- Better Intensity
- Primary beam intensity (*H to U*) gain factor: > 100
- Improved fragment transmission (fission products!) in SuperFRS and to the storage rings
- Total gain factor: up to 10000
- Fragment beam energy ~1 GeV/u
 - **⇒** Gain in luminosity
 - **⇒** Fully stripped ions
 - **⇒** Impurity-free beams

Nuclear Structure & Reactions with stable beams

High Spin, High Temperature in medium & high A Reactions with weakly bound Low A Fission Dynamics in high A

Accelerator Centres

- TIFR-BARC Pelletron Linac Facility
- IUAC Pelletron Linac
- VECC Cyclotron K~130, K~500
- Upcoming facilities
 - SINP Nuclear Astrophysics
 - PU Low Energy Tandem

NuSTAR-India

Proposals for Experiments Active Participation R&D and Deliverables

- DESPEC Gemarnium Array Spectrometer (DEGAS) (TDR accepted)
- MOdular Neutron SpectromeTER (MONSTER) (TDR accepted)
- Precision Measurements using Advanced Trapping System (MATS) (TDR accepted)
- Active targets
- Beam tracking detectors for NUSTAR

MONSTER cell

Detector design requirements for DEGAS

Maximum sensitivity to measure discrete gamma rays in presence of strong backgrounds

- 1. Solid angle coverage & detector granularity
- 2. Full-energy efficiency
- 3. Energy resolution and P/B ratio
- 4. High background suppression capability
- 5. Good time resolution and rate capability
- 6. Angular correlation and polarization sensitivity
- 7. Versatility

Phase-wise Implementation of DEGAS

1. Phase I:

RISING Detectors in triple cluster with e-cooling. BG suppression with active BGO shield. New pre-amplifier, slow control and DDAQ 2. Phase II:

AGATA Triple cluster along with EB triple cluster Imaging capability of AGATA (backside of implanter) DSGeSD as an implanter and decay detector 3. Phase III:

R&D for gamma-imaging detector (planar stack/point contact/Scintillator-Ge hybrid)

Connections with Indian Research Program in gamma spectroscopy

INGA campaign

Physics Highlights

Search and characterization of novel excitation

Magnetic and Anti-Magnetic Rotation

Degenerate dipole bands and chirality

Wobbling Excitation

Shell model excitation and emergence of collectivity

Isomers and its application

Fission fragment spectroscopy

Reaction dynamics study

BARC, IUAC, IUC-KC, SINP, TIFR, VECC, IITs, Univ

Investing in the polarization measurements of gamma rays and "wide-range timing spectroscopy" proved to be a successful approach for creating our specific "niche" and complement research at large scale facilities. Experiments: ~3600 hrs (50 Experiments in 3 years) 60 researchers including 25 PhD students

DSP based DAQ has Increased the data throughput by 10 times for INGA

Physics Highlights of INGA Collaboration

Results (2011-2015): 35 publications (2 PRL, 3 PLB, 1 NIMA)

Testing of Planar Ge detector at TIFR

Mechanics of DEGAS detectors fabricated at TIFR

Mechanics of DEGAS detectors fabricated at TIFR

Fabrication and Testing of Cryostat in India

16/02/2016

Pre-amp Block diagram for DEGAS

Slowed down beams - beam energy measurement

Decay Studies

Q-value Measurements using a Penning trap system.

Short-lived parent nucleus (half-life 50 ms or less) not a limitation Daughter has to be relatively long-lived (half-life ~ 10 s) Q-value should be relatively high >5 MeV for a high accuracy measurement.

Recoiled daughter nucleus should enter measurement trap axially through a small axial hole (< 100 micron).

Single ion measurement

VECC Penning trap Project

A Penning trap Project going on at VECC.

Magnet-cryostat cooled to 4K.

Cryogenic insert tested.

A prototype Penning trap already fabricated at VECC Workshop.

Final drawing and design going on.

Our MATS program would be complementary to our VECC program.

VECC Penning trap Project

A Penning trap Project going on at VECC.

Magnet-cryostat cooled to 4K.

Cryogenic insert tested.

A prototype Penning trap already fabricated at VECC Workshop.

Final drawing and design going on.

Our MATS program would be complementary to our VECC program.

NuSTAR-INDIA goal Structure of Exotic nuclei

- Unique Physics Opportunity with Exotic Neutron Rich Nuclei ar NUSTAR, FAIR
- Established expertise (National Labs)
- Nustar will be a value addition to on-going in-house experimental projects
- Initiate and nurture high-tech R&D (Universities) & HRD
- Linkage between NUSTAR-India and FAIR, to be strengthened
- Deliverables for NUSTAR towards funding

Thanks!