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Errata ¢

| first heard this joke from Louis Lyons:

“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

| wanted to attribute the quote to the Genius that
coined the phrase (as you can tell, | like it quite a bit)

... S0 | Googled for it about a year ago
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Some Google searches... 1
GO L)gle [frequentist impeccable bayesian assumption quote

Web Results 11 - 20

David Douglass' Comments: « Climate Audit
My favorite Bayesian/frequentist quote is by P. G. Hamer:. "A Frequentist uses

impeccable logic to answer the wrong question, while a Bayesian answers the ...
www.climateaudit.org/?p=3058 - 977K - Cached - Similar pages -

& . Advanced Search
G 0 L )8 le hamer frequentl“ (SearCh \ F"ruvierencc-s

Web

roF) Regression models

File Format: PDF/Adobe Acrobat - View as HTML

Bayeseans versus Frequentists. P. G. Hamer describes the schism in these. terms: . « A
frequentist uses impeccable logic to. answer the wrong question, ...
www.icaen.uiowa.edu/~recog/2007/Regression%20models % 202.pdf - Similar pages -

re1) The Reverend Bayes and Solar Neutrinos

File Format: Microsoft Powerpoint - View as HTML

the wrong question, while a Bayesian answers. the right question by making assumptions
that. nobody can fully believe in.” P.G. Hamer. Frequentist Bayesuan
conferences.fnal.gov/cl2k/copies/prosper1.ppt - Similar paqge

Sorry Louis, it was an honest mistake
P.S. Don’t trust everything you find on the web!
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Errata ¢

“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

-L.. Lyons
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Outline ((T"

Lecture 3:

» Compound hypotheses, nuisance parameters, & similar tests

» The Neyman-Construction (illustrated)

» Inverted hypothesis tests: A dictionary for limits (intervals)

» Coverage as a calibration for our statistical device

» The likelihood principle, and the logic for likelihood-based methods
Lecture 4:

» Systematics, Systematics, Systematics

» Generalizing our procedures to include systematics

v

Eliminating nuisance parameters: profiling and marginalization

v

The look elsewhere effect
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Lecture 4
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A restatement of the construction ((T"

For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «

If the data fell in that region, the point would be in the
interval [§_, 6, ]
So the interval[f—, 04 ] covers the true value with probability 1 — «

a4 R
/ / :

L0
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Examples of Likelihood Analysis @

In these examples, a model that relates precision electroweak observables
to parameters of the Standard Model was used

- the inference is based only on the likelihood function for data at hand

- there is no prior, so it’s not Bayesian. Not a Neyman Construction.
- what is the meaning of this contour if it’s not the Neyman Construction?

M i = 144 GeV
6 | L A A A
Aocffa)d _ {1 —LEP1 and SLD
5 — 0.02758+0.00035 N 80.5 - LEP2 and Tevatron (prel.)
""" 0.02749+0.00012 ] 68% CL
4 - *+ incl. low Q° data —
- . >
c\l>< 8
g 37 i = 80.4-
| =
2 = S
17 7 80.3 -
_ W Preliminary_ )
T T 1 I T - T T T T
30 100 300 150 175 200
m,, [GeV] m, [GeV]
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Logic of Likelihood-based Methods «%

Likelihood-based methods settle between two conflicting desires:

» We want to obey the likelihood principle because it implies a lot
of nice things and sounds pretty attractive

» We want nice frequentist properties (and the only way we know
to incorporate those properties “by construction” will violate the
likelihood principle)

o

\

[
!

If we had a way to
approximately get the
distribution of our test statistic
for every value of § based only
on the likelihood function (and
no prior) then we would have a
workable solution!

" There is a way to get

approximate frequentist
results. It’s the basis of
MINUIT/MINOS. Next Time!

Kyle Cranmer (NYU)
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Wilks’s theorem «T”'

Wilks’s theorem says that asymptotically the distribution of
f(x|6o)
T|Opest (7))

approaches a chi-square distribution, with the number of

degrees of freedom equal to the number of parameters of
Interest

—2log A(0p) =—2log T

—2log A\(0) ~ X7

n

f(x]6)
! It does not assume that
; the pdf is Gaussian!
05 )
0, \ = It is true for every value of g
; R eg. “distribution free”
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Demonstration of Central Limit Theorem 1

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5,2009 146

Thursday, February 5, 2009



Demonstration of Central Limit Theorem 1

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood

-4 -2 a 2 Rl
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Demonstration of Central Limit Theorem 1

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood
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Demonstration of Central Limit Theorem 1

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood
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Demonstration of Central Limit Theorem 1

The basic reason it works is due to an asymptotic limit

» the central limit theorem comes into play
» note: convolution based on additive test statistics:.. eg. log likelihood
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Likelihood-based Intervals «T”'

Wilks’s theorem tells us how the —2log A(0) ~ x2
profile likelihood ratio is distributed

» asymptotically and with some
restrictions on the parametrized
family of models, which we will
come back to later.

So we don’t really need to go to the

trouble to build its distribution by ——
. —2log \(60)

using Toy Monte Carlo or fancy

tricks with Fourier Transforms

f(=2log A(0)[6)
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Likelihood-based Intervals i

Wilks’s theorem tells us how the —2log A(0) ~ x2
profile likelihood ratio is distributed

» asymptotically and with some
restrictions on the parametrized
family of models, which we will
come back to later.

So we don’t really need to go to the
trouble to build its distribution by
using Toy Monte Carlo or fancy
tricks with Fourier Transforms

f(—2log A(0)|0)

We can go immediately to the cutoff
value of the profile likelihood ratio
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Likelihood-based Intervals ((Tﬁ

—2log A\(0) ~ X7

n

f(=2log A(0)[0)
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Likelihood-based Intervals @

|
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And typically we only show the
likelihood curve and don’t even

bother with the implicit
(asymptotic) distribution

CERN Academic Training, Feb 2-5,2009
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Likelihood-based Intervals i

(d)

—21In L(ne=3 | 1)
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fha
Figure from R. Cousins, Anc

Am. J. Phys. 63 398 (1995)

like
bot
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—2log A(0)

typically we only show the
ihood curve and don’t even
ner with the implicit

(asymptotic) distribution
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Systematics, Systematics, Systematics
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Classification of Systematic Uncertainties ((Tﬁ

Taken from Pekka Sinervo’s PhyStat 2003 contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/ancillary
measurements and can be treated as statistical uncertainties

- scale with luminosity
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Classification of Systematic Uncertainties ((Tﬁ

Taken from Pekka Sinervo’s PhyStat 2003 contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/ancillary
measurements and can be treated as statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the measurement or from
poorly understood features in data or analysis technique

- don’t necessarily scale with luminosity
+ eg: “shape” systematics
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Classification of Systematic Uncertainties ((Tﬁ

Taken from Pekka Sinervo’s PhyStat 2003 contribution

Type | - “The Good”

» can be constrained by other sideband/auxiliary/ancillary
measurements and can be treated as statistical uncertainties

- scale with luminosity
Type Il - “The Bad”

» arise from model assumptions in the measurement or from
poorly understood features in data or analysis technique

- don’t necessarily scale with luminosity
+ eg: “shape” systematics
Type lll - “The Ugly”

» arise from uncertainties in underlying theoretical paradigm
used to make inference using the data

- a2 somewhat philosophical issue
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A Prototype Problem «T’ﬁ

What is significance Z of an observation x=178 events in a

signal like region, if my expected background 5=100 with a
10% uncertainty?
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A Prototype Problem «T’ﬁ

What is significance Z of an observation x=178 events in a

signal like region, if my expected background 5=100 with a
10% uncertainty?

The question seems simple enough, but it is not actually
well-posed

» what do | mean by 10% background uncertainty?
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A Prototype Problem ((Tﬁ

What is significance Z of an observation x=178 events in a

signal like region, if my expected background 5=100 with a
10% uncertainty?

The question seems simple enough, but it is not actually
well-posed

» what do | mean by 10% background uncertainty?

Typically, we consider an auxiliary measurement y used to
estimate background (Type | systematic)

» eg: a sideband counting experiment where background
in sideband is a factor + bigger than in signal region

Lp(x,y|u,b) = Pois(x|pu + b) - Pois(y|Tb).
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Example Sideband Measurement 1

Sideband measurement used to
extrapolate / interpolate the
background rate in signal-like
region

20000

Events / 2 GeV

17500

For now ighore uncertainty in
extrapolation. o0

By treating main and sideband 12500
measurement together, one can
convert a systematic error into oo el |

|
105 120 135

a statistical one! m_ (GeV)

Lp(x,y|u,b) = Pois(x|pu + b) - Pois(y|Th).
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W

Incorporating systematics by smearing T
At LEP the Cousins-Highland Method was used for Systematics
The Cousins-Highland method
Integrates-out b S o b
L(x|Hy,y )= /b L(x|b)L(b| v )db go(:: /\ go_::
o S
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Incorporating systematics by smearing ((T”

At LEP the Cousins-Highland Method was used for Systematics

The Cousins-Highland method
Integrates-out b

o
o
o
o
o
(]

bability Density

T T[T T T[T rrrrrort

L(z|Ho,y ) = [ L(x|D)L(b] y )db 4o

O 02 F

AR

0.015 [

[EERARRERRRENRRR

0.01 [

0.005 |-

But it uses a Bayesian notion L(b)

0;\\

L 1 L .l I I
0 100 200 300

L(y |b) L(b) ' x

Ly )= L(y)
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Incorporating systematics by smearing «T”

At LEP the Cousins-Highland Method was used for Systematics

The Cousins-Highland method
Integrates-out b

o
=)
a

0.05

i
L(z|Ho,y )= | L(x[b)L(b| y )b §2
R S o o S L
A/ L // \\ i
But it uses a Bayesian notion L(b) = 1 =i/ N\
L(y |b) L(b) ’ *

Ly )=

L(y)

Essentially, any method that incorporates systematics by integration is Bayesian.

Note, the term “Cousins-Highland” for this technique has grown well beyond it's
original usage. Better to call it a Bayes-Frequentist Hybrid. In literature
sometimes called the “Prior Predictive Method” or sometimes denoted Zn
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Coverage as calibration ¢

contours for b, =100, critical regions for t =1

true

This prototype problem has been .,

studied extensively. )/ ® Nosystemates
» instead of arguing about the merits of ™ | 2 ..
various methods, just go and check %} | % et
their coverage properties 0p | T comestooverase
80 [
» Results indicated large discrepancy in |
“claimed” coverage and “true” N
coverage for various methods N /AN
eg. 5sigma is realy ~4sigma for some. , TN A AT S SR SN

X

Reinforces idea of coverage as a
Callbratlon Of our Stat|st|ca| appratus Figure 7. A comparison of the various methods critical bou

ary Tcrit(y) (see text). The concentric ovals represent c
tours of Lg from Eq. 15.

Lp(x,y|u,b) = Pois(x|pu+ b) - Pois(y|Th).

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer [LHCStatisticalChallenges.ps
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Coverage as calibration T

Gaussian-mean problem (relative o), ZN=5

This prototype problem has been ot
studied extensively.

80—

» instead of arguing about the merits of
various methods, just go and check
their coverage properties

B
o
II|III

» Results indicated large discrepancy in
“claimed” coverage and “true” 50
coverage for various methods 20

» eg. 5sigma is realy ~4sigma for some. | . ., |

| |
0 0.02 0.04 0.06 0.08 0.1 0.12

II|I
0.14

Reinforces idea of coverage as a relative background uncertainty

calibration of our statistical appratus Recent work by Bob Cousins & Jordan
Tucker, [physics/0702156]

Lp(x,ylpu,b) = Pois(x|pu +b) - Pois(y|Tb).

http://www.physics.ox.ac.uk/phystat05/proceedings/files/Cranmer [LHCStatisticalChallenges.ps
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The Prototype Problem in RooFit/RooStats ((T/’

Early in the RooStats project, we

considered this prototype problem
.. Poisson PDF

0.05 —

Lp(x,y|u,b) = Pois(x|u + b) - Pois(y|Tb)| ™

0 10 20 30 40 50 60 70 80 90 100
X

Easy to code up using RooFit:

RooRealVar s( -, iy Wssead D05 50,03

RooRealVar bi{'o", s O 1 11155 57 i.ozs:

RooRealVar tau( : ,_taun, 0, 2); g F .
tau. setConstant (kTRUE) ; 2E Gamma Posterior
RooFormulaVar splush( g ,RooArgSet(s,b)); 0.015 -

RooProduct  hTauf ; ,RooArgSet(b, tau));
RooRealVar x( ", eogrby 0, 200,05

0.01—

RooRealVar  yi{ v, ,_b* tau, 0., 200.); o.oosg—
RO 0P01330n SlgRe glon ( : ’ X' 3p lusb) ; 0 5 10 15 20 25 30 35 40 45 20
RooPolsson sideband( ; . ¥, bTau) ;

RooProdPdf joint( ; . RooArgSet(sigRegion, sideband) );

Ro
2
=
o

T
S
c
2
=
°
&,
Q)
o
o

log Likelihood Rati

Easy to obtain relevant plots in three
different approaches

4 N ®w A& a o N m::

B e

L
0 5 10 15 20 25 30 35 40 45 50
s

(=]
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Tvpe Il Systematics «T’//

Class Il systematics generally due to 3™ o 20
uncertainty in shape of background g * M tthh (QCD)
. . . .. & 60 Il tthb (EW)
» this uncertainty is limiting factor g
in ttH(H—bb) analysis <
20
» also relevant for H=YY :

100 150 200 250 300 350 400

m,, (GeV)

A huge amount of effort goes into *
identifying other measurements o~ l
that can be used to estimate or S
constrain the background

» control samples are an important I
tool for experimentalists \

Try to convert Type Il into Type |

do/dM (pb/GeV)
{

Figure 5. Two plausible shapes for the continuum ~~v m:
spectrum at the LHC.
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A common likelihood function ((Tﬁ

Consider an experiment with Nchan channels indexed by |
Each channel has ni events indexed by j

- with s; signal and bi background expected
Each event has discriminating variables xj; (possibly N-dim)

- with fs(z;;) and fo(xij)describing signal & bkg components

-and assume signal and background don’t interfere
guantum mechanically, so that the probabilities just add

Then one can write the following pdf / likelihood function

Nchan n;
L(xij]si,b;) = H Pois(n;|s; _|_bz.)H sifs(@ ;).+b'fb($ j)

J
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A common likelihood function ((Tﬁ

Consider an experiment with Nchan channels indexed by |
Each channel has ni events indexed by j

- with s; signal and bi background expected
Each event has discriminating variables xj; (possibly N-dim)

- with fs(z;;) and fo(xij)describing signal & bkg components

-and assume signal and background don’t interfere
guantum mechanically, so that the probabilities just add

Then one can write the following pdf / likelihood function
- with nuisance parameters

Nchan n;
ifs(Tijivs) + b0 fo(Tss; v
L(wij|si,bi,vi) = H Pois(n;|s; +bi)H sifs(Ti VS),j;b.fb(x] Vi)

J
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@
v

Generalizing the Likelihood Ratio with Nuisance Parameters

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)
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@
v

Generalizing the Likelihood Ratio with Nuisance Parameters

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
$|H()
ZIZ‘Hl
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@
v

Generalizing the Likelihood Ratio with Nuisance Parameters

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)

Then we generalized it to composite hypotheses.
How do we generalize it to include nuisance parameters?

159
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Generalizing the Likelihood Ratio with Nuisance Parameters (-('-"

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)
Then we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?
Variable Meaning

0, physics parameters

0, nuisance parameters

0,0, unconditionally maximize L(z|6,,6;) .

- . o ~ —

0, conditionally maximize L(x|60,q,0;) %
7~
a
)
o,
=
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Generalizing the Likelihood Ratio with Nuisance Parameters (-('-"

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)
Then we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?
Variable Meaning

0, physics parameters
0, nuisance parameters
0,0, unconditionally maximize L(z|6,,6;) .
- . o ~ —
0, conditionally maximize L(x|60,q,0;) %
(Ho : 8, = by0) 3
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Generalizing the Likelihood Ratio with Nuisance Parameters (-('-"

Initially, we started with 2 simple hypotheses, and showed
the likelihood ratio was most powerful (Neyman-Pearson)
Then we generalized it to composite hypotheses.

How do we generalize it to include nuisance parameters?
Variable Meaning

0, physics parameters
0, nuisance parameters
8,0, unconditionally maximize L(z |é 9,) .
0, conditionally maximize L(z|6,¢, 6;) g
(Ho 0, =0 0) Now consider the Likelihood Ratio 5
A -
(Hy 2 0, 7 br0) | _ L(@lbro,6,) 3
L($|éra éS)
Intuitively [ is a reasonable test statistic for Hy: it is the maximum likelihood
under Hy as a fraction of its largest possible value, and large values of [ signify
that Hj is reasonably acceptable.
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An example

@

Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to O

L(datalu = Ob(u 0),

v(u=0)

L(datalfi, b, ")

Au=0)=
L(datal|ft, b, D)
—~ T T T | T T T | I I I | I I I | I I I | I I I
> _ ]
o4 ATLAS _
i VBF H(120)—tt—lh -
PN \s=14TeV, 30fb"
=10 n
o -
> T
L 8 — _
61 -
41 ]
2 A -
O N I --+--‘I"'|:: L | ..'.:'-'."'?:- :1'- X INN : |- L | 1]
% 80 100 120 140 160 180
M., (GeV)

F

)

>>

L(data|p = 0,b, 1)

I | I I I | I I I

ATLAS ]
VBF H(120)—tt—>lh -
\s=14TeV, 3016 ]

120

140 160 180

M. (GeV)

50
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Properties of the Profile Likelihood Ratio

After a close look at the profile likelihood ratio
L(data M:O,B u=>0 ,\3 u=>0
(o)  LAdatalu=0,b(n =0),¥(u =0))
L(data|ii,b,V)
one can see the function is independent of true values of v
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the
distribution of the profile likelihood ratio has an asymptotic

form ,
—2log A(p =0) ~ x7

Thus, we can calculate the p-value for the background-only
hypothesis by calculating —21log A(u = 0)

or equivalently:

7 = +/—2log A(u = 0)
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Profile Likelihood Ratio & MINUIT

Rolke, Lopez, Conrad published a method
based on the profile likelihood ratio (NIM

A551) before the term was used much in

HEP

» hoticed identical results with MINOS
limits, extensive numerical tests

MINUIT long writeup explains algorithm

» [imits based on extreme values of the

Contour ...................................................... ,..: ------------------------
» algorithm does not sound much like the "

profile likelihood ratio, but it’s not hard
to show extreme points must lie on
profile constraint and lie on same

likelihood contour

Taking MINOS out to 50 is extreme,
amazingly it seems to work quite well.

W

Signal Rate

"y,
b ",

*
*

profile constraint
&/
b(s)

Figure 7.2: MINOS ermmor confidence
rameter 1

region for pa-
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The Profile Likelihood Ratio in RooFit/RooStats ((T’

An early request from RooStats to RooFit was to
provide a profile likelihood ratio g |

s

| . .
mssssssssssssssnnnsssnnnnaguannn il asnnnnnaEannnnnaannnnnnnnnnnngunnnnnnnnnnnninnnpmmn -

L Y T ¥ R ST Y 'Y

............................................

0 01 02 03 04 05 06 07 0.8
. : frac

e Very easy to perform an analysis

with the profile likelihood ratio : |
now ;)

j—y

.

w
T

e MINOS error box and profile
likelihood give same error » : 5
for multi-dimensional likelihood ol gl e el

frac

—
™7 ™7 T

o
n

Taken from Wouter Verkerke, NIKHEF
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Wilks’s theorem 1

An recent ATLAS Higgs example:
» even with very complicated pdf, distribution looks X

oy
ey

L(data|u = 0,b(u = 0),%(u = 0))
L(data|fi,b, )

Alu=0)=

?
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Experimentalist Justification

So far this looks a bit like magic. How can you claim that you
incorporated your systematic just by fitting the best value of
your uncertain parameters and making a ratio?

It won’t unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if
the profile likelihood ratio is still distributed as a chi-square

_LProbabiIity
e 2

—r
<
(&)

—h
<
H

10°°

10°®

i

12 1

Nominal (Fast Sim) Here it is pretty stable, but

miss

ol it’s not perfect (and this is
o e a log plot, so it hides some
Q” scale 4 pretty big discrepancies)

Leading-order tt

Leading-order WWbb
Full Simulation

The profile approach works

L dt=10 fb” asymptotically and only if
your parametrization is

120 sufficiently flexible.

log Likelihood Ratio

Kyle Cranmer (NYU)
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A very important point «T’ﬁ

If we keep pushing this point to the extreme, the physics
problem goes beyond what we can handle practically

Wilks’s theorem holds if the true distribution is in the family
of functions being considered

» eg. we have sufficiently flexible models of signal &
background to incorporate all systematic effects

» but we don’t believe we simulate everything perfectly

» ..and when we parametrize our models usually we have
further approximated our simulation.

- nature -> simulation -> parametrization

At some point these approaches are limited by honest
systematics uncertainties (not statistical ones). Statistics can
only help us so much after this point. Now we must be physicists!
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Floating mass & look-elsewhere effect ¢

In the floating mass case, it is clear that there is a degradation in
significance due to the look-elsewhere effect (aka “trials factor”)

- naive estimate of factor is Range/(mass resolution)

Formally, the conditions required for Wilks’s theorem do not hold
because floating mass parameter makes no sense in a
background-only model. See a Higgs example below.

§10-1%"'|"" LELELN 1 | B | JLN I | '- _‘§10-1IE‘-_1" | I ] ceyTrrrprrrT preeepee ey eeeTy
> - —— ANLL(BftSB-SBftSB) > F —— ANLL(BtSB-SBftSB)
®102 @102
’_'é' - —— ANLL(BfitB-SBftB) _“é’ F ——— ANLL(BfitB-SBfitB)
<10°F <10%E :

: fixed mass : floating mass
104} : 104
10°F 10° l | | l

_el 1 ) l:- ....... PETET I | E—— " ] ]
10-10 S5 0 5 10 15 20 25 30 35 40 10-:,10 S5 0 5 10 15 20 25 30 35 40

ANLL ANLL

The effect depends on range that the fit considers (non-local):
eg. a 120 GeV Higgs pays price for considering 1TeV

For another example, see L. Demortier, p-vaues: http://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf
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@

7

Neyman Construction with Nuisance Parameters

1
ARRRRRRRERARERF -~~~ Jnhn

We just showed two examples where the
6

assumptions necessary for Wilks’s theorem were
5

violated
» implied that we could not use standard asymptotic

arguments about how profile L.R. (out test statistic) -
3

is distributed
But that doesn’t mean we are totally stuck: 2

IIIIIIIIIIIIIIIIIIIIIIII

» we can still generate “toy” Monte Carlo and directly

(profile L.R. or any other one)
- It is fairly straight-forward to extend Neyman
Construction to include additional nuisance

parameters

at the stated confidence for every value of the nuisance

parameter
» if there is any value of the nuisance parameter which

makes the data consistent with the parameter of interest,
that parameter point should be considered:

» eg. don’t claim discovery if any background scenario is
compatible with data

CERN Academic Training, Feb 2-5,2009

build sampling distribution of the test statistic
0

!
mnnwmmun|H\HHHHHHH|HH

f—

—a

e
—_—
—_—
—_—
— .

Illléllllllllllllll

3 4 5 6
X
full construction

1 2

The goal is that the parameter of interest should be covereg—

|
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Neyman Construction with Nuisance parameters T

Biggest challenge for Neyman Construction is to avoid
significant over-coverage

» note: projection of nuisance parameters is a union (eg.
set theory) not an integration (Bayesian)

ideal shape of conf. region

H min H

max u
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Profile Construction T
Gary Feldman presented an approximate Neyman proiie constraint fo
Construction, based on the profile likelihood ﬁs)xﬁ_ /\/
ratio as an ordering rule, but only performing the “%/
construction on a subspace (eg. their conditional -

maximum likelihood estimate) /\/ )

A Subtlety, Hlustrated

EEEREREREROCO . .

EEEEEEOO00 The profile construction means that one does
T EEEEE not need to scan each nuisance parameter

ERERCOOO0O0000 p

(keeps dimensionality constant)

"
-

» easier computationally

0000000000 This approximation does not guarantee exact
OO000000000;
5 reet coverage, but
—— » tests indicate impressive performance
5
n | » one can expand about the profile
' ' construction to improve coverage, with the
known exa . .. . .
— Sl limiting case being the full construction
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A word on combinations and publishing
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Examples of Published Likelihoods

W
l

At previous PhyStats, we agreed to publish likelihood functions

mLimit’I =144 GeV

(5)
AOchad =
—0.02758+0.00035
----0.0274910.00012
«++ incl. low Q° data

Excluded \:, /

Preliminary

30 100
m,, [GeV]

Surely we can do better!

300

L~

You can find examples of
published likelihoods in 1D

In 2-D you just get the cclmtours

' ' |
1 —LEP1 and SLD

80.5 - LEP2 and Tevatron (prel.)

68% CL

150 175

m, [GeV]

200

Kyle Cranmer (NYU)
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Example of Digital Publishing

|
5 ROOT Object Browser e 101 %)
S8 P Edit View Opsons lnspect Clasees Help
File View Options |_A RooPlot of "x"_|
Sweraeroat =] @1 5 [l <l [&] 8] | Swr
All Folders Contents of Y"ROOT File s/wspace.root" é ao:
(_Jmot g
(_JPROOF Sessions D 60l-
1:' fuserive ke ke /roofit/wokdir
B ROOT Fiks MyWorkSpace;1 - =
&=pace ool B
) 20/
RooFit's Workspace now provides the _
ability to save in a ROOQOT file the full x

likelihood model, any priors you might
want, and the minimal data necessary
to reproduce likelihood function.

A RooPlot of "m” |

Projection of profile likelihcod
w L2 -~ o

Can also evaluate integrals over x 4

. 3
necessary for Neyman construction! i
Need this for combinations, we should i

Kyle Cranmer (NYU)

CERN Academic Training, Feb 2-5,2009

173

Thursday, February 5, 2009



Combining Results: An Example

A combination example

e Combining ‘ATLAS’ and ‘CMS’ result from persisted
workspaces

Read ATLAS { TFile* f = new TFile("atlas.root") ;
workspace RooWorkspace *atlas = f->Get("atlas") ;

Read CMS TFile* f = new TFile("cms.root") ;
workspace RooWorkspace *cms = f->Get("cms") ;

Construct RooAddition n11Combi("n11Combi","n11 CMS&ATLAS",
combined LH

mframe->Draw() ; // result on next slide

RooArgSet(*cms->function(“n11”),*atlas->function(“n11”))) ;

Construct
profile LH { RooProfileLL p11Combi("p11Combi™,"p11",n11Combi,*atlas->var("mHiggs™)) ;
in mHiggs
RooPlot* mframe = atlas->var("mHiggs")->frame(-3.5,-2.5) ;
Plot atlas->function(“n11”)->plotOn(mframe)) ;
At/as’C.MS’ cms->function(“n11”)->plotOn(mframe),LineStyle(kDashed)) ;
combined p11Combi.plotOn(mframe,LineColor(kRed)) ;
profile LH - ’ ’

Wouter Verkerke, NIKHEF

Profile likelihood

1
'CMS’

30

25

Combined
20

15

\III|IIL-I|IIII|II\I

||||||||||||||+‘|I.IJJ1"..
8534333231 3

-29 -28 -2.7 -2.6 -2.5
mHiggs

By using the workspace, it is easy to share results, ideal for combinations.

Example above shows opening an ‘atlas’ and ‘cms’ workspace, and
performing a combined fit to a common parameter with profile likelihood.

‘Atlas’

Kyle Cranmer (NYU) CERN Academic Training, Feb 2-5,2009
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Concluding remarks «T’ﬁ

We have covered a lot of ground in the last four days:
» basic ideas of probability, informaiton, Bayesian vs. Frequentist

» hypothesis tests for simple & compound hypotheses
» confidence intervals with and without nuisance parameters
» the likelihood principle and the foundation for likelihood-based inference

| hope these lectures have enhanced your appreciation for the foundation and
the possibilities of statistical methods relevant for particle physics.

» To master any of these techniques requires some dedicated time and
study, and | hope the references provided earlier can help.

» Most of the major experiments have statistics committees that are there to
help advise and educate, so they are also excellent resources

» We hope to organize a RooFit & RooStats tutorial ~June 2009

With luck, the LHC will bring amazing era of discovery. We must be ready to
take on this challenging environment, filled with uncertainties, and establish
the new Standard Model of particle physics.

Good luck to you all!
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Supplemental Slides
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Type Ill Systematics (‘%

Type Il Systematics are related to variations in inference from
uncertainty in the overall theoretical framework

» Bayesian approach: assign priors over the “framework space”

» Sinervo suggests Frequentist can’t incorporate them because
one cannot find an ensemble associated to the theories

- but theoretical framework can be thought of as an additional
nuisance parameter (possibly discrete) - can be incorporated!

- only need an ensemble of some observable if one wants to
constrain the space of the theories, not to incorporate them

- if theoretical framework influences our experimental result,
then we don’t really know what we are doing!

Taken from Cousins’ Phystat05 talk:

 A.W.F. Edwards (in Kalbfleisch 1970): “Let me say at once that I can see
no reason why it should always be possible to eliminate nuisance
parameters. Indeed, one of the many objections to Bayesian inference 1s
that 1s always permits this elimination."
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An (Outdated) of Type Illl Systematics (‘T’

CPH calculation FeynHiggs calculation

Two theoretical tools used %
to exclude regions of CPX
Higgs scenario using the
same measurement &
statistical techniques

Excluded
by LEP

10

1 Theoretically - 1 F Theoretically
inaccessible 3 inaccessible
 (GeV/e ) my, (GeV/e )
. CPH .OR. FeynHiggs
Do we want to weight these plots

with a Bayesian prior,
- or -

Do we want to only exclude in the

region where they both exclude?

1 ¢ Theoretically
L inaccessible

0 20 40 60 80 100 120 140
my, (GeV/c)
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Exploring High-Dimensional Models ¢
A few groups now using Markov-Chain Monte Carlo techniques to
explore high-dimensional models (MSUGRA)

» conclusions are sensitive to the choice of prior

» treat it like a weather forecast
[hep-ph/0507283, hep-ph/0601089, arXiv:0705.0487]

L/L(max

» What would you do with a 60 1
likelihood map like this? 50 1 8:
40 - 0.7
» reduce sensitivity to prior = . | 0.6
with “natural priors” via a = 0.5
Hierarchical Bayes model 20 : 0.4
10 | 0.3
» See talks by Lafaye & 0 8'?

Roszkowski at PhyStat LHC 0 05 1 15 9 0'

my (TeV)
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Exploring High-Dimensional Models

A few groups now using Markov-Chain Monte Carlo techniques to
explore high-dimensional models (MSUGRA)
» conclusions are sensitive to the choice of prior

» treat it like a weather forecast

» What would you do with a

likelihood map like this?

mo(

» reduce sensitivity to prior
with “natural priors” via a

Hierarchical Bayes model

» See talks by Lafaye &

Roszkowski at PhyStat LHC

m ., (TeV)

0.5

10 20 30 40 50 60
tanp

0
P =] 0 ) y
10 20 30 40 50 60

tanf

Relative probability density
0.2 0.4 0.6 0.8

A, (TeV)
-L II\) o N S (o]
0 2

CMSsSM

Q - u>0

10 20 30 40 50 60
tanp
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Hierarchical Bayes in HEP ((r"

p(mo, M1/2, Ao, i, B, s|Ms) = p(mo|Ms) p(M1/2|MS) p(Ag|Ms)
p(u|Ms) p(B|Ms) p(s),

1 1 Mo
pon3Ms) = e (g0 ) ).

p(m07 M1/27A07/'L7B) — / dMS p(m07M1/27A07:LL7 BlMS) p(MS)
0

Flat Priors Hierarchical “REWSB” priors
(C) 4 P/P(max) 1 (d) 4 T | | | T T P/P(max 1
3.5 - 35 -
3 4 F 1 038 3 L - 0.8
S 25 : S 25 :
S, | 0.6 & 5 | 1 0.6
g 15 y 04 B 15T | 0.4
1 - 1t -
0.5 ] 0.2 0.5 ] 0.2
O 0 —— L l l
0 10 20 30 40 50 60 70 0 0 10 20 30 40 50 60 70 0
tan B tan {3
Allanach, Cranmer , Lester, Weber [arXiv:0705.0487]
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Histogram Interpolation “%

One piece of functionality provided by RooFit / RooStats, is
Alex Read’s histogram interpolation algorithm

» take several PDFs, construct PDF with additional
parameter corresponding to the interpolation parameter.

A.L. Read | Nuclear Instruments and Methods in Physics Research A 425 (1999) 357360

= 007

T 14 T I ™ L ™ | -
§_ 006 1 .-_" DELPHI -
3 005 Ny L\j : M
<004 | T 1 :
0.03 | I . B
0.02 :_ H I—: g A ; [ ARocoPlot of “x* | | Mistogram of hh__x_alpha | WO )
0.01 L_ i | ' X _-" Treeall - - g N u'::: ]
PR S N LA IR e S Fos T . NP i
40 50 60 70 80 90 100 msq;&lﬂi-’ " RN -
m(Ge V/Cz) 3 o e
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Numeric convolutions — Class RooFFTConvPdf

e Usage example

// Construct landau (x) gauss (10000 samplings 274 order interpolation)
t.setBins (10000, ”cache”) ;
ROOFFTConvPdf 1xg("lxg","landau (X) gauss",t,landau,gauss,?2) ;

- » "!“'f“’l‘

e Example with cyclical ‘leakage’ fj‘

— Can reduce this by specifying a é:‘;
‘buffer zone’ in FFT calculation E“ \
beyond end of ranges %n / \

conv.setBufferFraction (0. 3) i A

% S Jo 5 W 15 2 25 20
t

Wouter Verkerke, NIKHEF
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Workspace and Combinations «T”'

One of the main achievements thus far was the idea and
implementation of the Workspace.

» With a few lines one can save entire model to a ROOT file
» can visualize model as a graph
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Workspace and Combinations 1

One of the main achievements thus far was the idea and
implementation of the Workspace.

» With a few lines one can save entire model to a ROOT file

» can visualize model as a graph
» scales to complicated models
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. ; %
RooFit Documentation ((T'

Updated User ,S Guide: Usage example: ws. import{pdf, RenameConf1ictNodes(“_my™)) ;

Import a RooAbsArg object, e.g. function, p.d.f or variable into the workspace. This import function
clones the input argument and will own the clone. If a composite object is offered for import, e.g. a
1 3 4 page dO Cument p.d.f with parameters and observables, the complete tree of objects is imported. If any of the -
variables of a composite object (parameters/observables) are already in the workspace the imported
p.d.f. is connected to the already existing variables. If any of the function objects (p.d.f, formulas) to
be imported already exists in the workspace an error message is printed and the import of the entire

ftp ://root. Ce rn. Ch/rOOt/d OC/ROO F It_U Se rs_M a n ua |_2 . 9 1 _33 . pdf E?:(;;;Sg?cm is cancelled. Several optional arguments can be provided to modify the import

The import accepts the following arguments for importing value objects (functions & variables)

const RooAbsArgdk inArg The imported function/p.d.f

RenameConf1ictNodes(const char* Add suffix to branch node name if name conflicts with
suffix) existing node in workspace

RenameNodes (const char* suffix) Add suffix to all branch node names including top level
node

RenameVariable(const char* Rename variable as specified upon import
inputName, const char®
outputName)

RecycleConflictNodes() |f any of the function objects to be imported already exist in
the name space, connect the imported expression to the
already existing nodes. WARNING: use with care! If
function definitions do not match, this alters the definition of
your function upon import

The import accepts the following arguments for importing data objects

http://root.cern.ch/root/v522/Version522.news.html#roofit const: RooAbsDatad inbata Tne mported Gataset

RenameDataset(const char* Rename dataset upon insertion
suffix)

New tutorial macros available

A completely new set of 70(!) tutorial macros is now available in $SROOTSYS/tutorials/roofit
These macros are divided in several subjects and are all referenced as iluustrations of concepts
explained in the forthcoming edition on RooFit Users Manual. All macros are extensively
documented and each is fully functional standalone. The accompanying update of the Manual is
expected mid-September.
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RooStats Wiki page ((Tﬁ

https:/twiki.cern.ch/twiki/bin/view/RooStats/WebHome

Edit WYSIWYG Attach PDF Printable

You are here: TWiki = B RooStats Web = WebHome

Welcome to the RooStats Wiki

What is RooStats?

This is a wiki for RooSials development. RooStals is a project to create statistical tools for ROOT built on top of RooFit
and distributed in ROOT. It is a joint project between the LHC experiments and the ROOT team.

Organization

The RooStats project has an oversight committee formed by the heads of the ATLAS and CMS statistics forums.
Through several joint ATLAS-CMS statistics meetings we have converged on a structure in which the oversight
committee sets goals and priorities for tool development (at a high level), adjudicates any conflicts that might arise, and
helps find manpower if needed. The development of RooStals is open in nature, with four core developers:

» Kyle Cranmer representing ATLAS

» Gregory Schott representing CMS

» Lorenzo Moneta representing ROOT

» Wouter Verkerke representing RooF it (on which RooStals is based)

These core developers have access to ROOT's SVN repository.

Resources

mailing list: roostats-development -at- cern.ch is hosted via SIMBAZ: https://websve03.cern.chllistboxservices/
RooStats reference quide (latest trunk revision)

ROQOT's Stat and Math tools forum

Link to SVN branch

Initial RooStatsKarlsuhe package

" 8 = =8 »

Talks, meetings, and more information
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