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Baryon-baryon interaction including strangeness  

– Possible hyperon matter in the core of a neutron star 
– Exotic hadrons (non-qq, non-qqq) 

Inputs from theory 

– Lattice QCD: physical point results coming soon?
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Introduction on H-dibaryon

In 1977, Jaffe predicted that double strange dibaryon made of six quark 
(uuddss) may be deeply bound below the Lambda-Lambda threshold 
due to strong attraction from color magnetic interaction based on the bag 
model calculation 

Properties : JP =0+, mass : (1.9-2.8) GeV/c2 

Since prediction, dedicated measurements have been performed to look 
for the H dibaryon signal, but its existence remains an open question   

Phys. Rev. D 15, 267 (1977);  
Phys. Rev. D 15, 281 (1977) 
Phys. Rev. Lett. 38,195 (1977); 38, 617(E)(1977)

Jaffe 
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Properties : Jp =0+, mass : (1.9-2.8) GeV/c2

~ 80 MeV
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Lattice calculation – a bound state 20-50 

MeV/c2 (NPLQCD) or 13 MeV/c2 (HALQCD) 
Phys. Rev. Lett. 106 (2011) 162001, Phys. Rev. Lett. 106 (2011) 
162002

 Chiral extrapolation to physical pion mass 
leads to unbound H 
Phys. Rev. Lett. 107 (2011) 092004, Phys. Lett. B 706 (2011) 100 
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H-dibaryon (1)

NAGARA event – measurement of ΛΛ6H—>ΛΛ+4He (BE ~ 6.91 MeV)  

KEK-E522 observation of 2.6σ enhancement for ΛΛ invariant mass 
spectra – resonance!

KEK-PS E522 

Phys. Rev. C 75, 022201(R) (2007)Phys. Rev. Lett. 87,212502 (2001)

NAGARA Event
KEK-E373 Exp.

VOLUME 87, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 19 NOVEMBER 2001

TABLE III. Possible production modes of the double hyper-
nucleus. The errors on the mass of J2 hyperon and the binding
energies of single hypernuclei are not included in the errors on
BLL and DBLL. Only the cases of DBLL , 20 MeV are listed.

Target No. 1 No. 3 No. 4 BLL [MeV] DBLL [MeV]
12C 6

LLHe 4He p 2n .16.9 .10.6
12C 6

LLHe 4He d 1n 14.5 6 0.7 8.2 6 0.7
12C 6

LLHe 4He t 7.3 6 0.2 1.1 6 0.2
12C 7

LLHe 4He p 1n 21.6 6 1.3 13.3 6 1.3
14N 6

LLHe 7Li p 1n 24.4 6 2.1 18.2 6 2.1
14N 6

LLHe 6Li d 1n 25.8 6 1.3 19.6 6 1.3
14N 6

LLHe 4He 4He 1n 17.9 6 1.5 11.7 6 1.5
14N 7

LLLi 4He t 1n 26.2 6 0.9 17.2 6 0.9
14N 9

LLLi p 4He 1n 31.5 6 1.8 17.9 6 1.8
16O 8

LLLi 4He 4He 1n 31.1 6 0.9 19.9 6 0.9

modes which have inconsistent values, only one interpre-
tation remained,

12C 1 J2 ! 6
LLHe 1 4He 1 t

6
LLHe ! 5

LHe 1 p 1 p2.

The fact that the tracks of the reaction products were copla-
nar at both points A and B also suggests that no neutrons
were emitted from either vertex. The decay mode of 5

LHe
is nonmesonic but undetermined.

The possibilities that the double hypernucleus or the
single hypernucleus was produced in an excited state
can be rejected for the following reasons. If the double-
hypernucleus or the other fragments emitted from the
J2 stopping point had been produced in an excited state,
the value of DBLL calculated at the production point A
would be increased by the excitation energy. On the other
hand, if the single hypernucleus or the residual particles
emitted from the decay of the double hypernucleus had
been created in an excited state, the value of DBLL

calculated at the decay point B would be decreased by the
excitation energy. In both cases, the difference between
DBLL calculated at point A and at point B would be
enlarged and the consistency of the values of DBLL

would not be satisfied. Hence, our event, NAGARA, has
been interpreted uniquely as the sequential weak decay of

6
LLHe. Moreover, in the production and decay of 6

LLHe,
no particle-stable excited states are known or expected
for any of the reaction products. Therefore, there are no
ambiguities arising from excited states.

The value of DBLL was obtained as 0.62 6 0.61 MeV
from the decay vertex B of the double hypernucleus, while
its lower limit was determined as 1.08 6 0.22 MeV from
the production point A. These errors also include the
uncertainties in the values of the mass of the J2 hy-
peron (0.13 MeV) [20] and the binding energy of 5

LHe
(0.02 MeV) [21]. A kinematic fit was applied at each ver-
tex independently using the kinematic constraints of con-

servation of momentum and energy. In the fit at vertex B
the momentum of the proton (track No. 5) was constrained
to have a value consistent with the particle entering the
acrylic base film but not emerging from it, whereas the
mass of the double hypernucleus was a free parameter in
both the fit at vertex A and the fit at vertex B. By mini-
mizing the x2, we obtained DBLL ! 0.69 6 0.54 MeV
from the decay vertex B, and DBLL 2 BJ2 ! 0.92 6
0.21 MeV from the production point A. The value of
BJ2 was obtained experimentally from these values as
20.24 6 0.58 MeV. The fitted momentum of the proton
(track No. 5) was 87.9 6 3.0 MeV!c and the correspond-
ing range was 127 6 15 mm, which agrees with the fact
that the proton entered but did not emerge from the base
film.

The values of BLL and DBLL were determined uniquely
from vertex B with large errors, whereas the values ob-
tained from vertex A were more precise but depend on
BJ2 . In order to obtain their most probable values, we
combined the two independent determinations for several
fixed values of the J2 hyperon binding energy BJ2 . The
results, expressed as a function of BJ2 (MeV), were

BLL ! 7.13 1 0.87 BJ2 "60.19# MeV , (3)

DBLL ! 0.89 1 0.87 BJ2 "60.20# MeV . (4)

According to theoretical calculations for the nuclear
absorption rate of J2 hyperons [22–24], J2 hyperon
capture from an atomic 3D state in 12C is dominant, but
capture from a 4F or 2P state is not negligible. The
value of BJ2 of the 2P state varies with the J2 hyperon-
nucleus potential well depth, whereas the energy level
of the 3D state is better known because it depends
overwhelmingly on the Coulomb interaction rather
than the J2 hyperon-nucleus strong interaction. The
value of BJ2 of the 3D state is 0.13 MeV, which
is consistent with the present experimental result of
20.24 6 0.58 MeV. Adopting the value BJ2 !
0.13 MeV as the most probable value, the weighted mean
values are BLL ! 7.25 6 0.1910.18

20.11 MeV and DBLL !
1.01 6 0.2010.18

20.11 MeV, where the systematic errors are
determined from the fact that the value of BJ2 is uncertain
in the range from 0 to 0.34 MeV in our measurement.

Two of the past experiments [2–5] gave a value of
DBLL to be about 4.5 MeV. As mentioned above, there
remains the possibility in both events that the single hy-
pernuclei was produced in excited states. In such cases,
DBLL would be about 1 MeV and not in contradiction with
our result.

From the relation (2), the E176 experiment presented a
lower limit on the mass of the H dibaryon as 2203.7 6
0.7 MeV!c2 [4]. Several counterexperiments have put the
upper limits on the production rate of the H dibaryon
[25–27], which were below the theoretical calculation [28]
in the mass region below 2200 MeV!c2, and indicate the
nonexistence of a deeply bound H dibaryon. Using the
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lower limit on the mass of the H dibaryon as 2203.7 6
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Lattice QCD calculations – H-particle is indeed bound at quark mass 
above the physics range  

      NPLQCD: Phys. Rev. Lett. 106,162001 (2011), HALQCD: Phys. Rev. Lett. 106, 162002 (2011)… 

Chiral extrapolation to physical pion mass leads to unbound H  
       Phys. Rev. Lett. 107, 092004 (2011), Phys. Lett. B 706 (2011) 100 

H-dibaryon (2)

including the regulator mass, !. For comparison we
note that the physical octet masses are ð0:939; 1:116;
1:193; 1:318Þ GeV.

With respect to theH dibaryon we have retained only the
data from the HAL Collaboration [6] which was generated
on the largest lattice volume, namely, 3.87 fm. These data
points correspond to large (degenerate) pseudoscalar
masses, 1.015, 0.837 and 0.673 GeV, for which the finite
volume corrections are expected to be very small.
Accordingly we used the reported values without applying
any finite volume correction. In the case of the NPLQCD
Collaboration [7], where the calculation was performed at
m! ¼ 389 MeV andmK ¼ 553 MeV, we include in the fit
only the value for the binding of the H determined after
their extrapolation to infinite volume. Finally, we were
unable to include the quenched lattice data of Ref. [22],
which also indicated a bound H at large quark mass,
because the errors associated with ‘‘unquenching’’ are
considerable.

We chose the mass splitting between the H dibaryon
and the other dibaryon states appearing in its chiral loop
corrections to be the same as the octet-decuplet mass split-
ting used earlier, namely "H ¼ " ¼ 0:292 GeV. This is
compatible with the estimates of Aerts et al. [23] calculated
within the MIT bag model, as well as with the experimental
absence of other nearby states. The sensitivity of our fit to
"H is quite small, with an increase (decrease) of " by
100 MeV increasing (decreasing) the mass difference
2M! $MH by only 4 MeV. This small shift is combined

in quadrature with the error found from our chiral fit to
yield the final, quoted error in the binding of the H.
The best fit parameters describing the binding energy of

the H dibaryon are also given in Table III and the actual fit
is shown in Fig. 2. As explained above, the data shown in
Fig. 2 are from NPLQCD (lowest mass point) and HAL
(three largest mass points). In each case the curve nearest
the data point illustrates the extrapolation as a function of
the light quark mass implied by our fit at the value of the
strange quark mass corresponding to that lattice data point.
The errors shown are the result of combining in quadrature
the statistical and systematic errors quoted by the collab-
orations. The shaded error bands incorporate the effect of
correlations between the fit parameters, including the un-
certainty on the regulator mass. We note the remarkable
result that the best fit value of the chiral coefficient for the
H dibaryon,CH [which for convenience is normalized with
respect to the chiral coefficient for ! loops on the !
hyperon in Eq. (6)], is within 20% of the theoretical
value reported by Mulders and Thomas [8], who calculated
it using SU(6) symmetry. If instead we retain the
Mulders-Thomas coefficient, the H dibaryon is unbound
by 30% 9 MeV but the quality of the fit is significantly
reduced, with a #2 per degree of freedom of almost 2.
It is clear from Figs. 1 and 2 that both the octet data and

the data on the binding energy of the H dibaryon are very
well described. The binding of the H is reduced by a
decrease in the masses of the u and d quarks and the s,
with significant chiral curvature form! below 0.4 GeV. It is
important to note that our analysis does not explicitly

TABLE III. Values of the fit parameters for the octet and H dibaryon data corresponding to the fits shown in Figs. 1 and 2.

! (GeV) M0 (GeV) $ (GeV$1) % (GeV$1) & (GeV$1) B0 (GeV) &B (GeV$1) CH (GeV$2)

best fit value 1.02 0.861 $1:71 $1:20 $0:51 0.019 $2:36 5.65
error 0.06 0.037 0.12 0.10 0.05 0.004 0.20 0.09
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FIG. 2 (color). Binding energy of the H dibaryon versus pion
mass squared, resulting from our chiral fit, for several values of
the strange quark mass at which the simulations of Refs. [6,7]
were carried out.
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FIG. 1 (color). Fit to the octet data of PACS-CS [14] using
Eq. (1). Note that we have fit the data after applying finite
volume corrections and we have also used our fit to correct the
lattice data for the strange quark mass, which was somewhat
larger than the physical value.

PRL 107, 092004 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

26 AUGUST 2011

092004-3

P.E. Shanahan, A.W. Thomas and R.D. Young, 
Phys. Rev. Lett. 107, 092004 (2011)

36 HAL QCD Collaboration / Nuclear Physics A 881 (2012) 28–43

Fig. 5. The energy E0 and the root-mean-square distance
√

⟨r2⟩ of the bound state in the flavor singlet channel at each
quark mass. Bars represent statistical errors only.

Fig. 6. Summary of the H -dibaryon binding energy in recent full QCD simulations. HAL stands for the present results
and NPL stands for the result in Ref. [32].

(389,544) MeV, which is consistent with our result. Fig. 6 gives a summary of the binding
energy of the H -dibaryon obtained in recent full QCD simulations.

6. SU(3) breaking and H -dibaryon

When the flavor SU(3) symmetry is broken, masses of octet baryons are not degenerated any
more. Fig. 7 shows masses of “octet” baryons in the real world M

Phys
Y plotted at the right side,

while those in the flavor SU(3) symmetric world with κuds = 0.13840 is plotted at the left side.
The degenerated octet baryon mass M

SU(3)
Y is more or less equal to an average of physical “octet”

baryon masses. For later purpose, we introduce a phenomenological linear interpolation between
the two limits, MY (x) = (1 − x)M

SU(3)
Y + xM

Phys
Y with a parameter x, as shown by the dashed

lines in the figure.
In broken flavor SU(3) world, the H -dibaryon belongs to the S = −2, I = 0 sector of B = 2,

JP = 0+ states, instead of the flavor singlet channel. There are three BB channels in this sector
i.e. ΛΛ, NΞ and ΣΣ , which couple each other and whose interactions are described by a 3 by 3
potential matrix Vij (r) in the particle basis. Observables in the real world in this sector, including

HALQCD, Nucl. Phys. A 881 (2012) 28



7

Possible venues for H-dibaryon search

 Systematic study of double strangeness systems  
  

– Binding energies  

 Future experiments at J-PARC, KEK  

 Heavy Ion Collisions  

– Study two particle correlations  

– Invariant mass  
   High statistics data from Relativistic Heavy Ion Collider (RHIC) & 

Large Hadron Collider (LHC) 
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Particle correlation in HIC 
HIC as a hyperon factory 
Baryon interaction via hyperon correlation

Λ

π

Κ

p

Ξ

φ

π

π

π

π Λ

p

n

π

π

π

π

π

Uncorrelated
Interaction  

Interference 
(HBT) 

etc

kA�

kB�
F

E

C

D



9

TPC MTD Magnet BEMC BBC EEMC TOF 

The STAR detector at RHIC

6 Aihong Tang, CERN, July 19-23 2015 

STAR : Uniform and Large Acceptance 
TPC MTD Magnet BEMC BBC EEMC TOF 

HFT 
Large acceptance 

TPC: Full azimuthal coverage, (|η|<1.0)    HLT 
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a pair that shares one or two daughters with the real Λ were
avoided by removing any Λ pair with a common daughter.
Possible two-track biases from reconstruction were studied
by evaluating correlation functions with various cuts on the
scalar product of the normal vectors to the decay plane of
the Λs and on the radial distance between Λ vertices in a
given pair. No significant change in the correlation function
has been observed due to these tracking effects. Each mixed
event pair was also required to satisfy the same pairwise
cuts applied to the real pairs from the same event. The
efficiency and acceptance effects canceled out in the ratio
AðQÞ=BðQÞ. Corrections to the raw correlation functions
were applied according to the expression

C0ðQÞ ¼ CmeasuredðQÞ − 1

PðQÞ
þ 1; ð2Þ

where the pair purity, PðQÞ, was calculated as a product of
S=ðSþ BÞ for the two Λs of the pair. The pair purity is 92%
and is constant over the analyzed range of invariant relative
momentum.
The selected sample of Λ candidates also included

secondary Λs, i.e., decay products of Σ0, Ξ−, and Ξ0,
which were still correlated because their parents were
correlated through QS and emission sources. Toy model
simulations have been performed to estimate the feed-down
contribution from Σ0Λ, Σ0Σ0, and Ξ−Ξ−. The Λ, Σ, and Ξ
spectra have been generated using a Boltzmann fit at
midrapidity (T ¼ 335 MeV [18]) and each pair was
assigned a weight according to QS. The pair was allowed
to decay into daughter particles and the correlation function
was obtained by the mixed-event technique. The estimated
feed-down contribution was around 10% for Σ0Λ, around

5% for Σ0Σ0, and around 4% for Ξ−Ξ−. Thermal model
studies have shown that only 45% of the Λs in the sample
are primary [21]. However, one needs to run afterburners
to determine the exact contribution to the correlation
function from feed-down, which requires knowledge of
final-state interactions. The final-state interaction parame-
ters for Σ0Σ0, Σ0Λ, and ΞΞ interactions are not well known,
which makes it difficult to estimate feed-down using a
thermal model [21]. Therefore, to avoid introducing large
systematic uncertainties from the unknown fraction of
aforementioned residual correlations, the measurements
presented here are not corrected for residual correlations.
The effect of momentum resolution on the correlation

functions has also been investigated using simulated tracks
from Λ decays, with known momenta, embedded into real
events. Correlation functions have been corrected for
momentum resolution using the expression

CðQÞ ¼ C0ðQÞCinðQÞ
CresðQÞ

; ð3Þ

where CðQÞ represents the corrected correlation function,
and CinðQÞ=CresðQÞ is the correction factor. CinðQÞ was
calculated without taking into account the effect of
momentum resolution and CresðQÞ included the effect of
momentum resolution applied to each Λ candidate. More
details can be found in Ref. [22]. The impact of momentum
resolution on correlation functions was negligible com-
pared with statistical errors. Figure 2 shows the exper-
imental ΛΛ and Λ̄ Λ̄ correlation function after corrections
for pair purity and momentum resolution for 0–80%
centrality Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The
Λ̄ Λ̄ correlation function is slightly lower than the ΛΛ
correlation function, although within the systematic errors.
Noting that the correlations CðQÞ in Fig. 2 are nearly
identical for Λ and Λ̄, we have chosen to combine the
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FIG. 1 (color online). The invariant mass distribution for Λ and
Λ̄ produced in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, for
0–80% centrality. The Λ (Λ̄) candidates lying in the mass range
1.112 to 1.120 GeV=c2, shown by solid red vertical lines, were
selected for the correlation measurement.
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FIG. 2 (color online). The ΛΛ and Λ̄ Λ̄ correlation function in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, for 0–80% centrality.
The plotted errors are statistical only.
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midrapidity (T ¼ 335 MeV [18]) and each pair was
assigned a weight according to QS. The pair was allowed
to decay into daughter particles and the correlation function
was obtained by the mixed-event technique. The estimated
feed-down contribution was around 10% for Σ0Λ, around

5% for Σ0Σ0, and around 4% for Ξ−Ξ−. Thermal model
studies have shown that only 45% of the Λs in the sample
are primary [21]. However, one needs to run afterburners
to determine the exact contribution to the correlation
function from feed-down, which requires knowledge of
final-state interactions. The final-state interaction parame-
ters for Σ0Σ0, Σ0Λ, and ΞΞ interactions are not well known,
which makes it difficult to estimate feed-down using a
thermal model [21]. Therefore, to avoid introducing large
systematic uncertainties from the unknown fraction of
aforementioned residual correlations, the measurements
presented here are not corrected for residual correlations.
The effect of momentum resolution on the correlation

functions has also been investigated using simulated tracks
from Λ decays, with known momenta, embedded into real
events. Correlation functions have been corrected for
momentum resolution using the expression

CðQÞ ¼ C0ðQÞCinðQÞ
CresðQÞ

; ð3Þ

where CðQÞ represents the corrected correlation function,
and CinðQÞ=CresðQÞ is the correction factor. CinðQÞ was
calculated without taking into account the effect of
momentum resolution and CresðQÞ included the effect of
momentum resolution applied to each Λ candidate. More
details can be found in Ref. [22]. The impact of momentum
resolution on correlation functions was negligible com-
pared with statistical errors. Figure 2 shows the exper-
imental ΛΛ and Λ̄ Λ̄ correlation function after corrections
for pair purity and momentum resolution for 0–80%
centrality Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The
Λ̄ Λ̄ correlation function is slightly lower than the ΛΛ
correlation function, although within the systematic errors.
Noting that the correlations CðQÞ in Fig. 2 are nearly
identical for Λ and Λ̄, we have chosen to combine the
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FIG. 1 (color online). The invariant mass distribution for Λ and
Λ̄ produced in Auþ Au collisions at
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p ¼ 200 GeV, for
0–80% centrality. The Λ (Λ̄) candidates lying in the mass range
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selected for the correlation measurement.
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The plotted errors are statistical only.
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analytical model has been used to fit the data to obtain a source size, a scattering length and an effective
range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for
dihyperon searches are discussed.
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Measurements of the correlation function for a pair of
particles with small relative momenta have been used to
obtain insight into the geometry and lifetime of the particle-
emitting source in relativistic heavy-ion collisions [1]. The
two-particle correlation function is not only sensitive to the
distribution of the separation of emission points, but also to
the effects from quantum statistics (QS) and to the final-
state interactions (FSI). For two-particle systems where the
final-state interactions are well known, information about
both temporal and spatial separation distributions can be
obtained using the two-particle correlation function [1,2].
If one has an idea of the source size, one could use it to
determine the FSI between two particles for which the
correlation function is measured. In this Letter we have
used ΛΛ correlation measurements to determine FSI
between ΛΛ which is not well known experimentally.
TheΛΛ correlation function is also relevant for searching

for the H dibaryon, a six-quark state predicted by Jaffe [3].
Recent lattice QCD calculations from the HAL [4] and
NPLQCD [5] Collaborations indicate the possible existence
of a bound H dibaryon, where the calculations assumed a
pion mass above the physical mass. The production rate for
the hypothesized H dibaryon depends on the collision
evolution dynamics as well as on its internal structure. It
is believed that the most probable formation mechanism for
theH dibaryon would be through coalescence of ΛΛ and/or
ΞN at a late stage of the collision process, or through
coalescence of six quarks at an earlier stage of the collision
[6]. A measurement of the ΛΛ interaction is important for
understanding the equation of state of neutron stars [7].
Moreover, at high densities, an attractive ΛΛ interaction
could lead to formation ofH-matter or strangelets in the core
of moderately dense neutron stars [8,9].
At present, the constraint on the binding energy of the H

dibaryon comes from double Λ hypernuclei (NAGARA
event) [10], which allows for the possibility of a weakly
bound H dibaryon or a resonance state [11]. The resonance
state is expected to decay into ΛΛ and would be observed
as a bump in theΛΛ invariant mass spectrum or observed as
a peaklike structure in two-particle correlations [12].
Dedicated measurements have been performed to look

for the H dibaryon signal, but its existence remains an
open question [13–15]. The STAR experiment has searched
for strangelet production close to the beam rapidity at
RHIC and has reported an upper limit for strangelets [16].
The NA49 experiment at the super proton synchrotron
attempted to measure the ΛΛ correlation function in heavy-
ion collisions, but their statistics were insufficient to draw
physics conclusions [17]. The observed high yield of

multistrange hyperons in central nucleus-nucleus collisions
at RHIC [18] and recent high-statistics data for Auþ Au
collisions at RHICprovide a unique opportunity to studyΛΛ
correlations and search for exotic particles like the H
dibaryon. In this Letter, we present the first measurement
of the ΛΛ correlation function in heavy-ion collisions, for
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV using the STAR
experiment at the RHIC.
STAR is a multipurpose experiment at RHIC with full

azimuthal coverage. The time projection chamber [19] was
used for tracking and particle identification in the pseudor-
apidity range jηj < 1. Approximately 2.87 × 108 events
from 2010 and 5.0 × 108 events from 2011 were analyzed.
To suppress events from collisions with the beam pipe
(radius 3.95 cm), the reconstructed primary vertex was
required to lie within a 2 cm radial distance from the center
of the beam pipe. In addition, the z position of the vertex
was required to lie within #30 cm of the center of the
detector. The decay channel Λ → pπ with branching ratio
63.9# 0.5% was used for reconstruction of the Λ [20].
The Λ (Λ̄) candidates were formed from pairs of p (p̄) and
π− (πþ) tracks whose trajectories pointed to a common
secondary decay vertex which was well separated from the
primary vertex. The decay length (DL) of aΛ candidate was
required to be more than 5 cm from the primary vertex. The
DL cut did not correspond to a hard cutoff in momentum
and it was based on the requirement for high purity of the Λ
sample as well as reasonable efficiency. The distance of
closest approach (DCA) to the primary vertex was required
to be within 0.4 cm. The invariant mass distribution of theΛ
(Λ̄) candidates at 0–80% centrality under these conditions
as shown in Fig. 1 has an excellent signal (S) to background
(B) ratio of S=ðSþ BÞ ∼ 0.97. The solid (dashed) histo-
gram is for Λ (Λ̄) candidates. All candidates with invariant
mass between 1.112 and 1.120 GeV=c2 were considered.
The two-particle correlation function is defined as

CmeasuredðQÞ ¼ AðQÞ
BðQÞ

; ð1Þ

where AðQÞ is the distribution of the invariant relative
momentum, Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−qμqμ

p
, where qμ ¼ pμ

1 − pμ
2, for a pair

of ΛðΛ̄Þ from the same event. BðQÞ is the reference
distribution generated by mixing particles from different
events with approximately the same vertex position along
the z direction. The same single-particle cuts were applied
to individual Λs for the mixed-event pairs. Correlations
between a real Λ and a false Λ candidate reconstructed from
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data

CðQÞ¼N
!
1þλ

"
−1

2
expð−r20Q2Þþ1

4

jfðkÞj2

r20

"
1− 1

2
ffiffiffi
π

p d0
r0

$

þRefðkÞffiffiffi
π

p
r0

F1ðQr0Þ−
ImfðkÞ
2r0

F2ðQr0Þ
$

þares expð−r2resQ2Þ
%
; ð4Þ

where k ¼ Q=2, F1ðzÞ ¼
R
1
0 ex

2−z2=zdx and F2ðzÞ ¼
ð1 − e−z

2Þ=z in Eq. (4). The scattering amplitude is
given by

fðkÞ ¼
"
1

f0
þ 1

2
d0k2 − ik

$−1
; ð5Þ

where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data
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given by
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where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data
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where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data
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where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data
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where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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results for Λ and Λ̄ in order to increase the statistical
significance.
The combined ΛΛ and Λ̄ Λ̄ correlation function for

0–80% centrality is shown in Fig. 3. The systematic errors
were estimated by varying the following requirements
for the selection of Λ: DCA, DL, and mass range, which
affect the signal-to-background ratio. Systematics from cuts
on the angular correlation of pairs were also studied that
may affect correlations at small relative momentum. The
systematic uncertainties from different sources were then
added in quadrature. The combined systematic error is
shown separately as a shaded band in Fig. 3. If there were
only antisymmetrization from quantum statistics, a ΛΛ
correlation function of 0.5 would be expected at Q ¼ 0.
The observed pair excess near CðQ ¼ 0Þ compared to 0.5
suggests that the ΛΛ interaction is attractive; however, as
mentioned earlier, the data are not corrected for residual
correlations and those effects can give rise to this excess. In
Fig. 3, the dotted line corresponds to quantum statistics.
The Lednický and Lyuboshitz analytical model [23]

relates the correlation function to source size and also takes
into account the effect of the strong final-state interactions
(FSI). The following correlation function is used to fit the
experimental data
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where f0 ¼ a0 is the scattering length and d0 ¼ reff is the
effective range. Note that a universal sign convention is used
rather than the traditional sign convention for the s-wave
scattering length a0 ¼ −f0 for baryon-baryon systems.
More details about the model can be found in Ref. [23].
The free parameters of the LL model are normalization
(N), a suppression parameter (λ), an emission radius (r0),
scattering length (a0), and effective radius (reff ). In the
absence of FSI, λ equals unity for a fully chaotic Gaussian
source. The impurity in the sample used and finite momen-
tum resolution can suppress the value of λ parameter. In
addition to this, the non-Gaussian form of the correlation
function and the FSI between particles can affect (suppress
or enhance) its value. The last term in Eq. (4) is introduced to
take into account the long tail observed in themeasured data,
where ares is the residual amplitude and rres is the width of
the Gaussian.
When the amplitude ares in Eq. (4) is made to vanish, a fit

performed on data causes a larger χ2=NDF (dashed line in
Fig. 3) and also the obtained r0 is much smaller than
the expected r0 from previous measurements [22,24,25],
which suggests that the measured correlation is wider than
what the fit indicates in this scenario. This effect can be
explained by the presence of a negative residual correlation
in the data, which is expected to be wider than the
correlation from the parent particles. Therefore, to include
the effect of a residual correlation, a Gaussian term
ares expð−Q2r2resÞ is incorporated in the correlation function
(solid line in Fig. 3). A negative residual correlation
contribution is required with ares ¼ −0.044% 0.004þ0.048

−0.009
and rres ¼ 0.43% 0.04þ0.43

−0.03 fm, where the first error is
statistical and the second is systematic. Such a wide
correlation could possibly arise from residual correlations
caused by decaying parents such as Σ0 and Ξ, and coupling
of NΞ to the ΛΛ channel. The fit parameters obtained with
the residual correlation term are N ¼ 1.006% 0.001,
λ ¼ 0.18% 0.05þ0.12

−0.06 , a0 ¼ −1.10% 0.37þ0.68
−0.08 fm, reff ¼

8.52% 2.56þ2.09
−0.74 fm, and r0 ¼ 2.96% 0.38þ0.96

−0.02 fm with
χ2=NDF ¼ 0.56. All the systematic errors on the param-
eters are uncorrelated errors. The Gaussian term is empiri-
cal and its origin is not fully understood. However,
the addition of this term improves fit results and the
obtained r0 is compatible with expectations. The LL
analytical model fit to data suggests that a repulsive
interaction exists between ΛΛ pairs, whereas the fit to
the same data from Morita et al. showed that the ΛΛ
interaction potential is weakly attractive [26]. The

FIG. 3 (color online). The combined ΛΛ and Λ̄ Λ̄ correla-
tion function for 0–80% centrality Auþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Curves correspond to fits using the
Lednický-Lyuboshitz (LL) analytical model with and without
a residual correlation term [23]. The dotted line corresponds to
quantum statistics with a source size of 3.13 fm. The shaded band
corresponds to the systematic error.
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Lambda-Lambda interaction potential

All model fits to data suggest 
that a rather weak interaction is 
present between         pairs  ⇤⇤

STAR Col. Phys. Rev. Lett. 114, 022301(2015)

conclusion about an attractive or a repulsive potential is
limited by our statistics and is model dependent. However,
all model fits to data suggest that a rather weak interaction
is present between ΛΛ pairs.
The scattering length and the effective radius obtained

from the model fit are shown in Fig. 4. For comparison,
interaction parameters for pp, nn, and pn singlet (s) and
triplet (t) states, as well as for pΛ singlet (s) and triplet (t)
states, are also shown in Fig. 4 [27]. It is observed that
jaΛΛj < japΛj < jaNN j. The LL analytical model gives a
negative a0 parameter and favors a slightly repulsive
interaction in our convention which is different from a
weak attractive potential extracted from the NAGARA
event and the KEK result [13,28,29]. The fit parameters are
still limited by statistics and our fitted a0 is 1.6σ from a sign
change. A negative sign for the scattering length (in our
convention) is a necessary though not sufficient condition
for the existence of a ΛΛ bound state.
If a ΛΛ resonance exists near the threshold, that would

induce large correlations between two Λs at small relative
momentum [12,30]. For the ΛΛ system below the NΞ
and ΣΣ thresholds (k < 161 MeV=c), the FSI effect is
included in the correlation function through the s-wave
amplitude [31],

fðkÞ ¼ 1

k cot δ − ik
; ð6Þ

where k and δ are relative momentum and s-wave phase
shift, respectively. The effective-range approximation for
k cot δ is

k cot δ ¼ 1

a0
þ reff

k2

2
: ð7Þ

Equation (6) should satisfy the single-channel unitarity
condition ImfðkÞ ¼ kjfðkÞj2 with real parameters a0 and
reff . When the scattering amplitude is saturated by a
resonance, it can be rewritten [32] in the form

fðkÞ ¼ 1

ðk20 − k2Þ=ð2μγÞ − ik
: ð8Þ

Comparing the above to Eqs. (6) and (7), one sees that
1=a0 ¼ k20=ð2μγÞ and reff ¼ −1=μγ, where k0, μ, and γ are
the relative momentum where the resonance occurs, the
reduced mass, and a positive constant, respectively. The
scattering length (effective range) becomes positive (neg-
ative) so that the k cot δ term vanishes at k ¼ k0 [33]. The
signs of a0 and reff obtained from the fit to our data
contradict Eq. (8), which suggests the nonexistence of a ΛΛ
resonance saturating the s-wave below the NΞ and ΣΣ
thresholds. More discussion on the existence of H as a
resonance pole can be found in [26].
Assuming that H dibaryons are stable against strong

decay of Λ, and are produced through coalescence of ΛΛ
pairs, the yield for the H dibaryon can be related to the Λ
yield by d2NH=2πpTdpTdy ¼ 16Bðd2NΛ=2πpTdpTdyÞ2,
where B is a constant known as the coalescence coefficient.
From pure phase space considerations, the coalescence
rate is proportional to Q3 [34]. For a weakly bound or
deuteronlike bound state H, the ΛΛ correlation below the
coalescence length Q would be depleted. Our data show
no depletion in the correlation strength in our measured
region, which indicates that the value of Q at coalescence
for the H dibaryon, if it exists, must be below
0.07 GeV=c, where we no longer have significant statis-
tics. Therefore, because the deuteron coalescence
coefficient B ¼ ð4.0% 2.0Þ × 10−4 ðGeV=cÞ2 [35,36] for
a Q of approximately 0.22 GeV=c, we estimate that the
H dibaryon must have B less than ð1.29% 0.64Þ ×
10−5 ðGeV=cÞ2 for Q < 0.07 GeV=c. The corresponding
upper limit for pT-integrated dNH=dy is ð1.23% 0.47stat %
0.61systÞ × 10−4 if the coalescence mechanism applies to
both the deuteron and the hypothetical H particle.
In summary, we report the first measurement of the ΛΛ

correlation function in heavy-ion collisions for Auþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured correlation strength at
Q ¼ 0, CðQ ¼ 0Þ is greater than 0.5 (the expectation from
quantum statistics alone). In addition to the normal ΛΛ
correlation function, a Gaussian term is required to fit the
data, possibly due to residual correlations. The extracted
Gaussian source radius is compatible with the expectation
from previous measurements of pion, kaon, and pΛ
correlations [22,24,25]. The model fits to data suggest that
the strength of the ΛΛ interaction is weak. Numerical
analysis of the final-state interaction effect using an s-wave

)-1| (fm
0

|1/a

0 1 2

 (f
m

)
ef

f
r

5

10

15
ΛΛ

 (NAGARA event)ΛΛ
nn
pp

 (s)Λp

 (t)Λp

pn (t)
pn (s)

FIG. 4 (color online). The ΛΛ interaction parameters from
this experiment (solid circle), where the shaded band represents
the systematic error. The interaction parameters from pp, pn
singlet (s), and triplet (t) states, and from nn, pΛ (s), and pΛ (t)
states are shown as open markers [27]. Also, the ΛΛ interaction
parameters that reproduce the NAGARA event are shown
as open stars [28,29].
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Assuming that H dibaryons are stable against strong decay of Lambda, 
and are produced through coalescence of Lambda-Lambda pairs: 

                      
    The integrated yield:

conclusion about an attractive or a repulsive potential is
limited by our statistics and is model dependent. However,
all model fits to data suggest that a rather weak interaction
is present between ΛΛ pairs.
The scattering length and the effective radius obtained

from the model fit are shown in Fig. 4. For comparison,
interaction parameters for pp, nn, and pn singlet (s) and
triplet (t) states, as well as for pΛ singlet (s) and triplet (t)
states, are also shown in Fig. 4 [27]. It is observed that
jaΛΛj < japΛj < jaNN j. The LL analytical model gives a
negative a0 parameter and favors a slightly repulsive
interaction in our convention which is different from a
weak attractive potential extracted from the NAGARA
event and the KEK result [13,28,29]. The fit parameters are
still limited by statistics and our fitted a0 is 1.6σ from a sign
change. A negative sign for the scattering length (in our
convention) is a necessary though not sufficient condition
for the existence of a ΛΛ bound state.
If a ΛΛ resonance exists near the threshold, that would

induce large correlations between two Λs at small relative
momentum [12,30]. For the ΛΛ system below the NΞ
and ΣΣ thresholds (k < 161 MeV=c), the FSI effect is
included in the correlation function through the s-wave
amplitude [31],
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where k and δ are relative momentum and s-wave phase
shift, respectively. The effective-range approximation for
k cot δ is
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Equation (6) should satisfy the single-channel unitarity
condition ImfðkÞ ¼ kjfðkÞj2 with real parameters a0 and
reff . When the scattering amplitude is saturated by a
resonance, it can be rewritten [32] in the form
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Comparing the above to Eqs. (6) and (7), one sees that
1=a0 ¼ k20=ð2μγÞ and reff ¼ −1=μγ, where k0, μ, and γ are
the relative momentum where the resonance occurs, the
reduced mass, and a positive constant, respectively. The
scattering length (effective range) becomes positive (neg-
ative) so that the k cot δ term vanishes at k ¼ k0 [33]. The
signs of a0 and reff obtained from the fit to our data
contradict Eq. (8), which suggests the nonexistence of a ΛΛ
resonance saturating the s-wave below the NΞ and ΣΣ
thresholds. More discussion on the existence of H as a
resonance pole can be found in [26].
Assuming that H dibaryons are stable against strong

decay of Λ, and are produced through coalescence of ΛΛ
pairs, the yield for the H dibaryon can be related to the Λ
yield by d2NH=2πpTdpTdy ¼ 16Bðd2NΛ=2πpTdpTdyÞ2,
where B is a constant known as the coalescence coefficient.
From pure phase space considerations, the coalescence
rate is proportional to Q3 [34]. For a weakly bound or
deuteronlike bound state H, the ΛΛ correlation below the
coalescence length Q would be depleted. Our data show
no depletion in the correlation strength in our measured
region, which indicates that the value of Q at coalescence
for the H dibaryon, if it exists, must be below
0.07 GeV=c, where we no longer have significant statis-
tics. Therefore, because the deuteron coalescence
coefficient B ¼ ð4.0% 2.0Þ × 10−4 ðGeV=cÞ2 [35,36] for
a Q of approximately 0.22 GeV=c, we estimate that the
H dibaryon must have B less than ð1.29% 0.64Þ ×
10−5 ðGeV=cÞ2 for Q < 0.07 GeV=c. The corresponding
upper limit for pT-integrated dNH=dy is ð1.23% 0.47stat %
0.61systÞ × 10−4 if the coalescence mechanism applies to
both the deuteron and the hypothetical H particle.
In summary, we report the first measurement of the ΛΛ

correlation function in heavy-ion collisions for Auþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured correlation strength at
Q ¼ 0, CðQ ¼ 0Þ is greater than 0.5 (the expectation from
quantum statistics alone). In addition to the normal ΛΛ
correlation function, a Gaussian term is required to fit the
data, possibly due to residual correlations. The extracted
Gaussian source radius is compatible with the expectation
from previous measurements of pion, kaon, and pΛ
correlations [22,24,25]. The model fits to data suggest that
the strength of the ΛΛ interaction is weak. Numerical
analysis of the final-state interaction effect using an s-wave

)-1| (fm
0

|1/a

0 1 2

 (f
m

)
ef

f
r

5

10

15
ΛΛ

 (NAGARA event)ΛΛ
nn
pp

 (s)Λp

 (t)Λp

pn (t)
pn (s)

FIG. 4 (color online). The ΛΛ interaction parameters from
this experiment (solid circle), where the shaded band represents
the systematic error. The interaction parameters from pp, pn
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states are shown as open markers [27]. Also, the ΛΛ interaction
parameters that reproduce the NAGARA event are shown
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Discussion on H-signal from model
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FIG. 13. (Color online) Correlation functions combined with the
residual term and the feed-down correction for R = 2.5 fm.

scattering length. We also find that all the NSC97 potentials,
of which reff is broadly ranged from 1.15 to 16.33 fm and the
scattering length is 1/a0 < −2 fm−1, can reproduce the data
with χ2/Ndof ≃ 1.

In general, results with the residual correlation term (25)
depends on the feed-down contribution λ. Since the value
λ = (0.67)2 takes only $0 into account, this serves a minimal
correction owing to possible % contribution. We confirmed
that the present result for the constraint on the scattering
length, 1/a0 < −0.8 fm, holds for smaller λ by repeating the
same analyses for λ = (0.572)2 in which the % contribution is
included.

The above discussion applies to all the potentials with
a0 < 0 analyzed here. We note that there are two exceptions.
We find that ND46 and NF42, which have the positive largest
1/a0 thus have a bound state, can fit the data when R < 0.7
fm with the residual correlation taking 2 < rres < 4 fm and
−0.2 < ares < −0.08. We consider it to be coincidence, since
it is accompanied with rres larger than the source size and
χ2/Ndof ∼ 1 is achieved only in the small R region. As we
shall discuss below, the appearance of the bound state should
lead to suppression of C(Q) at low Q when the source size is
larger than a0. Therefore, one may be able to confirm or rule
out this possibility by analyzing data of more central collisions,
which are expected to have a larger source size.

VI. DISCUSSION

A. Possible signal of H resonance

On the basis of the scattering length and the effective
range of the !! interaction obtained in the present analyses,
the existence of the H particle as a bound state of !! is
not preferred. This can be understood from the enhanced
!! correlation function observed in the data compared
with the free case. If we had a bound state in !!, the
correlation function would be suppressed from the free
case. The scattering wave function has the asymptotic form,
χq(r) = e−iδ sin(qr + δ)/qr , where q = Q/2 is the relative
momentum of !. In the case of small enough interaction range
compared with the source size, we can substitute the asymp-

totic form for the scattering wave function χq(r) in Eq. (11)
and obtain the low energy limit of the correlation function,

C(Q) → 1
2

− 1√
π

a0

R
+ 1

4

(
a0

R

)2

(Q → 0), (26)

where the phase shift is given approximately as δ ≃ −a0q.
For !! interaction with a bound state (a0 > 0), the scattering
wave function has a node at r ≃ a0 at low energies, then the
correlation function is suppressed compared with the free case
in the low energy limit, as long as the second term dominates
in Eq. (26). Thus we would see a suppressed Q region if we
have a bound state. In practice, the interaction range is not
small enough compared with the source size considered here,
thus the above estimate might not be precise. It should be
noted that the above argument is not valid, when !! is not
the dominant component of H .

The existence of H as a resonance pole above the !!
threshold is another interesting possibility, as suggested in
KEK experiments [8,9]. While the !! potentials considered
here do not have H as an s-wave resonance, a quark model
calculation with instanton induced interaction allows the
existence of resonance H below the %N threshold [46]. In
order to evaluate the strength of the resonance H signal in
the correlation function, we have invoked the statistical model
results. In the statistical model [47], H (!) yield is calculated
to be NH ≃ 1.3 × 10−2 (N! ≃ 30) per event per unit rapidity.
We here assume that the resonance H is produced in a different
mechanism from the !! potential scattering. We also assume
that the mass of H is distributed according to the Breit-Wigner
function, then the contribution of resonance H in the !!
relative momentum spectrum is given as

dNH

dydQ
= NH fBW(EQ)

dEQ

dQ
, (27)

where fBW(E) = (H/[(E − EH )2 + (2
H/4]/2π is the Breit-

Wigner function. In Fig. 14, we show the strength of
the resonance H signal. We have fitted the STAR data
in a simple smooth function, and added the ratio of
dNH /dydQ to the thermal !! distribution, dN!!/dydQ =
4πq2N!! exp(−q2/2µT )/(2πµT )3/2/2, where q = Q/2,
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FIG. 14. (Color online) Possible resonance H signal in the !!

correlation function. Signal for (EH ,(H ) = (14 MeV, 4.5 MeV)
and (EH ,(H ) = (1.8 MeV, 1.5 MeV) are multiplied by 10 and 2,
respectively.
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On the basis of (a0,reff) 
from current data, the 
existence of H-particle as 
bound state of Lambda-
Lambda is not preferred. 

On the resonance pole: 
high statistics is 
necessary to confirm or 
rule out the existence at 
low Q region.
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• No visible signal with respect to 
mixed event or rotational background
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Fig. 3. (A) The invariant mass distribution of the Λpπ from 0–10% most central Au+Au collisions at
√

sNN = 200 GeV.
A dashed line is the rotational background and solid line is mixed event background. (B) The invariant mass distribution
around the ΛΛ mass threshold.

4. H → Λpπ

To look for the H -dibaryon signal using direct method, we have used one of the weak decay
H → Λpπ . The vertex of the pπ pair closest to the target is taken to be the hypothetical H

vertex. The other pπ pair is required to be the hypothetical Λ, which decays at least 3.5 cm (dΛ)
away from the H vertex and its mass is in the range 1.112–1.12 GeV/c2. The mass of other pπ

pair is required to be less than 1.110 GeV/c2. To connect Λ vertex to H decay vertex, an angle
between the line defined by H and Λ vertices and Λ direction (θΛ) is constrained to be smaller
than 10 degree. Similar cut is applied to connect H decay vertex with primary vertex: θH < 10
degree. Fig. 3(A) shows the Λpπ invariant mass for 0–10% most central Au + Au collisions at√

sNN = 200 GeV using conditions mentioned above, where dots are the data points. A dashed
line is background generated using the rotation of daughter tracks of the Λ candidate and a
solid line is mixed event background generated by mixing a pπ pair from one event and the
Λ candidate from different event. A region of invariant mass, where we expect the H -dibaryon
signal, is shown in Fig. 3(B). We expect nearly 200 signal events for H -dibaryon below 2Λ

invariant mass (2.23 GeV/c2). However, no significant signal is observed with respect to mixed
event or rotational background for the mass below 2Λ invariant mass. It is also important to note
that, the data shown here are in very preliminary stage and further investigation is required to
arrive at any conclusion about the existence of H -dibaryon.

5. Summary

To summarize, the measurement of ΛΛ correlation function is presented. The ΛΛ interaction
is attractive. Fits to data with different potential models gives negative scattering length, indicat-
ing towards non-existence of bound H -dibaryon. Preliminary measurement of invariant mass for
Λpπ is presented.
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Strangeness -3 is stable against strong decay, from MIT bag and potential 
model calculation, N-Omega with I=1/2, J=2, EB=140-250MeV                                     

                                  F. Wang et al., : PRL 59,627(1987); PRC 69, 065207(2004); 83, 015202(2011); 92,065202(2015) 

HAL-QCD calculation find a bound state of N-Omega system, potential 
through Nambu-Bethe-Salpeter wave function                      NPA 928, 89(2014)

Move onto the Strangeness = -3 dibaryon 

u
u d

s�
s� s�

 40

 60

 80

 100

 120

 140

 160

 180

 0  50  100  150  200  250  300  350

δ
 [d

eg
]

Ec.m. [MeV]

Figure 6: Scattering phase shift δ as a function of the kinetic energy E = k2/(2µ) in the
center of mass frame, obtained from the potential with the n = 1 fit at t − t0 = 8. Only
statistical errors are shown.

systematic errors, we consider the observables obtained from the average
over 7 ≤ t − t0 ≤ 11 and over 9 ≤ t − t0 ≤ 11, as well as those from the
average over tmin ≤ t− t0 ≤ 11 (tmin = 7, 8, 9) with n = 2. Finally we obtain

BNΩ = 18.9(5.0)(+12.1
−1.8 ) MeV, (7)

aNΩ = −1.28(0.13)(+0.14
−0.15) fm, (8)

(re)NΩ = 0.499(0.026)(+0.029
−0.048) fm. (9)

Here the numbers in the first parenthesis correspond to the statistical error,
while those in the second parenthesis show the systematic errors obtained
by taking the largest difference between the central value and the other 5
values. Note that this systematic uncertainty is still sizable, in particular for
the binding energy.

10
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FIG. 1: Three typical examples of the NΩ potential. The
black circles with error bars stand for the lattice QCD data
with heavy quark masses [7]. The red line (VII) corresponds to
a fit to the lattice data with a Gaussian + (Yukawa)2 form.
The green short-dashed line (VII) and the blue long-dashed
line (VIII) denote the potentials with weaker and stronger at-
tractions, respectively. The Coulomb potential for the pΩ
system is also shown by the purple dashed line.

non-identical pairs is directly related to the pairwise in-
teraction due to the absence of the quantum statisti-
cal effect [13]. The pΩ correlation function is given in
terms of the two-particle distribution NpΩ(kp,kΩ) nor-
malized by the product of the single particle distribu-
tions, NΩ(kΩ)Np(kp), with

∫

xi
≡

∫

d4xi,

C(Q,K) =
NpΩ(kp,kΩ)

Np(kp)NΩ(kΩ)
(1)

≃

∫

xp

∫

xΩ
Sp(xp,kp)SΩ(xΩ,kΩ) |ΨpΩ(r′)|2

∫

xp
Sp(xp,kp)

∫

xΩ
SΩ(xΩ,kΩ)

,

where relative and total momenta are defined as Q =
(mpkΩ − mΩkp)/M and K = kp + kΩ, respectively,
with M ≡ mp + mΩ. The source functions Si(xi,ki) ≡
Ei

dNi

d3kid4xi
, with i = p,Ω and Ei =

√

k2
i +m2

i , denote

the phase space distribution of p and Ω at freeze-out.
The final state interaction after the freeze-out is de-
scribed by the two-particle wave function ΨpΩ, in which
the shift of the relative coordinate r = xΩ − xp to
r′ = r − K(tp − tΩ)/M accounts for the possible dif-
ference in the emission time between p and Ω. In the
following, we assume that the pair purity is unity; i.e.
the weak decay contribution to p can be removed exper-
imentally and that to Ω is negligible [10, 18].
Taking into account the spin degeneracy, we have

|ΨpΩ|2 = 5
8 |Ψ5(r)|2 + 3

8 |Ψ3(r)|2, where Ψ5 (Ψ3) denotes
the wave functions in spin-2 (spin-1) channel. The strong
interaction is short ranged and modifies only the S-wave
component of the wave function, so that we may write

Ψ5(3)(r) = [ψC(r)− ψC
0 (r)] + χsc(abs)(r). (2)

Here ψC(r) is the Coulomb wave function characterized

TABLE I: The binding energy (EB), the scattering length (a0)
and the effective range (reff) with and without the Coulomb
attraction in the pΩ system. Physical masses of the proton
and Ω are used.

Spin-2 NΩ Potentials VI VII VIII

EB [MeV] − 0.05 24.8

without Coulomb a0 [fm] −1.0 23.1 1.60

reff [fm] 1.15 0.95 0.65

EB [MeV] − 6.3 26.9

with Coulomb a0 [fm] −1.12 5.79 1.29

reff [fm] 1.16 0.96 0.65

by the reduced mass µ = 601 MeV and the Bohr ra-
dius a = (µα)−1 ≃ 45 fm of the pΩ system. Its S-wave
component is denoted by ψC

0 (r). The scattering wave
function in the 5S2 state, χsc(r), is obtained by solving
the Schrödinger equation with both the strong interac-
tion (VI,II,III) and the Coulomb interaction. Note that
χsc(r) reduces to ψC

0 (r) in the absence of strong inter-
action. On the other hand, the wave function χabs(r)
in the 3S1 channel is zero for r ≤ r0 due to the strong
absorption into octet-octet states, while it is identical to
the Coulomb wave function for r > r0:

χabs(r) = θ(r − r0)
1

2ir̄

(

H+
0 (r̄)− F (r̄0)H

−
0 (r̄)

)

. (3)

Here Q = |Q|, r̄ = Qr, r̄0 = Qr0, and H+
L=0 (H−

L=0) is
the outgoing (incoming) Coulomb function which reduces
to e+ir̄ (e−ir̄) without the Coulomb force [19]. Note that
F (r̄0) = H+

0 (r̄0)/H
−
0 (r̄0), so that χabs(r) is continuous

across r = r0. In the absence of the absorption, we have
χabs(r)|r0→0 = ψC

0 (r), since F (r̄0 = 0) = 1.
Case with static source.— We now consider the fol-

lowing static source function with spherical symmetry to
extract the essential part of physics;

Si(xi,ki) = NiEi e
−

x
2
i

2R2
i δ(t− ti), (i = p,Ω). (4)

Here Ri is a source size parameter, while Ni is a normal-
ization factor which cancels out between the numerator
and denominator together with Ei in Eq.(1). Assuming
the equal-time emission tp = tΩ for the moment, one
obtains a concise formula,

C(Q) =

∫

[dr]

∫

dΩ

4π
|ψC(r)|2

+
5

8

∫

[dr]{|χsc(r)|2 − |ψC
0 (r)|2}

+
3

8

∫

[dr]{|χabs(r)|2 − |ψC
0 (r)|2}, (5)

where [dr] = 1
2
√
πR3dr r

2e−
r2

4R2 with R =
√

(R2
p +R2

Ω)/2

being the effective size parameter.
∫

dΩ is the integra-
tion over the solid angle between Q and r. Without

Morita etc. arXiv:1605.06765

Proposal on source size dependence analysis 
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FIG. 3: (a) The correlation function with both strong and
the Coulomb attractions for two different values of the static
source sizes, Rp,Ω = 2.5 fm (solid lines) and 5 fm (dashed
lines). (b) The small-large ratio CSL(Q) for the static source
between the different source sizes, Rp,Ω = 2.5 and 5 fm.

other hadrons due to small cross sections [21, 22]. To see
the influences of these dynamical properties, we consider
the following source model with 1-dim Bjorken expansion
[20],

S(xi,ki) = N ′
iE

tr
i

1

eE
tr
i /Ti + 1

e
− x2+y2

2(Rtr
i

)2 δ(τ − τi), (6)

where Etr
i =

√

(ktr
i )

2 +m2
i cosh(yi − ηs) with the mo-

mentum rapidity yi and the space-time rapidity ηs =
ln
√

(t+ z)/(t− z). The temperature and the proper-
time at the thermal freeze-out are denoted by Ti and τi,
respectively. The transverse source size is denoted by Rtr

i .
We consider a small system with Rtr

p = Rtr
Ω = 2.5 fm and

a large system with Rtr
p = Rtr

Ω = 5 fm. Following the re-
sults of the dynamical analyses of the peripheral and cen-
tral Pb+Pb collisions at

√
sNN = 2.76 TeV with hydro-

dynamics + hadronic transport [21], we take τp (τΩ) =
3 (2) fm for the former, and τp (τΩ) = 20 (10) fm for the
latter as characteristic values. We take Tp,Ω =164 MeV
for peripheral collisions [23], while Tp(TΩ)=120 (164)
MeV for central collisions [24]. Under the expanding
source, Eq.(1) has explicit K dependence: For illustra-
tive purpose, we take the total longitudinal momentum
to be zero Kz = 0 and the total transverse momentum to
be |Ktr|=2.0 (2.5) GeV for peripheral (central) collisions
which correspond to the twice of mean |ktr

p | values of the
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FIG. 4: (a) The small-large ratio CSL(Q) as a function of Q
for three typical potentials. (b) The same ratio as (a) as a
function of a−1

0 . In both figures, both the strong and Coulomb
interactions are included.

proton [25].

Figure 4(a) demonstrates the effect of the dynamical
property on CSL(Q): Its comparison to Fig.3(b) for the
static source indicates no significant difference as far as
the ratio CSL(Q) is concerned. Figure 4(b) shows CSL(Q)
as a function of a−1

0 : Its comparison to Fig.2(b) on C(Q)
implies that the effect of the Coulomb interaction is nicely
cancelled in the small-large ratio, so that the strong NΩ
interaction can be constrained by the measurements of
this ratio. Moreover, taking the ratio of C(Q) reduces
the apparent reduction of its sensitivity to the strong in-
teraction due to the purity factor. There are in principle
two ways to extract CSL(Q) experimentally in ultrarela-
tivistic heavy ion collisions at RHIC and LHC: (i) Com-
parison of the peripheral and central collisions for the
same nuclear system, and (ii) comparison of the central
collisions with different system sizes, e.g. central Cu+Cu
collisions and central Au+Au collisions at RHIC.

Conclusion.— Motivated by the strong attraction at
short distance between the proton and the Ω-baryon in
the spin-2 channel suggested by the recent lattice QCD
simulations, we studied the intensity correlation of the
pΩ emission from relativistic heavy ion collisions. Not
only the elastic scattering in the spin-2 channel, but also
the strong absorption in the spin-1 channel and the long-

Ratio of C(Q): small/large system: 
– Loose : Enhancement at low Q 
– Tight   : C(Q) < 1 
– No Bound: Slightly above 1

Starting from the N-Omega potential from HAL QCD data, Morita etc. 
propose a source size analysis of C(Q) to extract the strong p-Omega 
interaction w/o much contamination from Coulomb attraction.
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How to measure experimentally? 
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Summary

        interaction is indeed attractive 

 Attraction is not strong enough to form stable H-dibaryon 

 Interaction parameters: 1/a0 < -0.5 fm-1 and reff > 3 fm 

 Measured interaction parameter gives indication towards 
non-existence of        resonance below the                                                 

   threshold 
  

 Systematic study on S=-3 NΩ system is ongoing 

conclusion about an attractive or a repulsive potential is
limited by our statistics and is model dependent. However,
all model fits to data suggest that a rather weak interaction
is present between ΛΛ pairs.
The scattering length and the effective radius obtained

from the model fit are shown in Fig. 4. For comparison,
interaction parameters for pp, nn, and pn singlet (s) and
triplet (t) states, as well as for pΛ singlet (s) and triplet (t)
states, are also shown in Fig. 4 [27]. It is observed that
jaΛΛj < japΛj < jaNN j. The LL analytical model gives a
negative a0 parameter and favors a slightly repulsive
interaction in our convention which is different from a
weak attractive potential extracted from the NAGARA
event and the KEK result [13,28,29]. The fit parameters are
still limited by statistics and our fitted a0 is 1.6σ from a sign
change. A negative sign for the scattering length (in our
convention) is a necessary though not sufficient condition
for the existence of a ΛΛ bound state.
If a ΛΛ resonance exists near the threshold, that would

induce large correlations between two Λs at small relative
momentum [12,30]. For the ΛΛ system below the NΞ
and ΣΣ thresholds (k < 161 MeV=c), the FSI effect is
included in the correlation function through the s-wave
amplitude [31],

fðkÞ ¼ 1

k cot δ − ik
; ð6Þ

where k and δ are relative momentum and s-wave phase
shift, respectively. The effective-range approximation for
k cot δ is

k cot δ ¼ 1

a0
þ reff

k2

2
: ð7Þ

Equation (6) should satisfy the single-channel unitarity
condition ImfðkÞ ¼ kjfðkÞj2 with real parameters a0 and
reff . When the scattering amplitude is saturated by a
resonance, it can be rewritten [32] in the form

fðkÞ ¼ 1

ðk20 − k2Þ=ð2μγÞ − ik
: ð8Þ

Comparing the above to Eqs. (6) and (7), one sees that
1=a0 ¼ k20=ð2μγÞ and reff ¼ −1=μγ, where k0, μ, and γ are
the relative momentum where the resonance occurs, the
reduced mass, and a positive constant, respectively. The
scattering length (effective range) becomes positive (neg-
ative) so that the k cot δ term vanishes at k ¼ k0 [33]. The
signs of a0 and reff obtained from the fit to our data
contradict Eq. (8), which suggests the nonexistence of a ΛΛ
resonance saturating the s-wave below the NΞ and ΣΣ
thresholds. More discussion on the existence of H as a
resonance pole can be found in [26].
Assuming that H dibaryons are stable against strong

decay of Λ, and are produced through coalescence of ΛΛ
pairs, the yield for the H dibaryon can be related to the Λ
yield by d2NH=2πpTdpTdy ¼ 16Bðd2NΛ=2πpTdpTdyÞ2,
where B is a constant known as the coalescence coefficient.
From pure phase space considerations, the coalescence
rate is proportional to Q3 [34]. For a weakly bound or
deuteronlike bound state H, the ΛΛ correlation below the
coalescence length Q would be depleted. Our data show
no depletion in the correlation strength in our measured
region, which indicates that the value of Q at coalescence
for the H dibaryon, if it exists, must be below
0.07 GeV=c, where we no longer have significant statis-
tics. Therefore, because the deuteron coalescence
coefficient B ¼ ð4.0% 2.0Þ × 10−4 ðGeV=cÞ2 [35,36] for
a Q of approximately 0.22 GeV=c, we estimate that the
H dibaryon must have B less than ð1.29% 0.64Þ ×
10−5 ðGeV=cÞ2 for Q < 0.07 GeV=c. The corresponding
upper limit for pT-integrated dNH=dy is ð1.23% 0.47stat %
0.61systÞ × 10−4 if the coalescence mechanism applies to
both the deuteron and the hypothetical H particle.
In summary, we report the first measurement of the ΛΛ

correlation function in heavy-ion collisions for Auþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured correlation strength at
Q ¼ 0, CðQ ¼ 0Þ is greater than 0.5 (the expectation from
quantum statistics alone). In addition to the normal ΛΛ
correlation function, a Gaussian term is required to fit the
data, possibly due to residual correlations. The extracted
Gaussian source radius is compatible with the expectation
from previous measurements of pion, kaon, and pΛ
correlations [22,24,25]. The model fits to data suggest that
the strength of the ΛΛ interaction is weak. Numerical
analysis of the final-state interaction effect using an s-wave
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FIG. 4 (color online). The ΛΛ interaction parameters from
this experiment (solid circle), where the shaded band represents
the systematic error. The interaction parameters from pp, pn
singlet (s), and triplet (t) states, and from nn, pΛ (s), and pΛ (t)
states are shown as open markers [27]. Also, the ΛΛ interaction
parameters that reproduce the NAGARA event are shown
as open stars [28,29].
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conclusion about an attractive or a repulsive potential is
limited by our statistics and is model dependent. However,
all model fits to data suggest that a rather weak interaction
is present between ΛΛ pairs.
The scattering length and the effective radius obtained

from the model fit are shown in Fig. 4. For comparison,
interaction parameters for pp, nn, and pn singlet (s) and
triplet (t) states, as well as for pΛ singlet (s) and triplet (t)
states, are also shown in Fig. 4 [27]. It is observed that
jaΛΛj < japΛj < jaNN j. The LL analytical model gives a
negative a0 parameter and favors a slightly repulsive
interaction in our convention which is different from a
weak attractive potential extracted from the NAGARA
event and the KEK result [13,28,29]. The fit parameters are
still limited by statistics and our fitted a0 is 1.6σ from a sign
change. A negative sign for the scattering length (in our
convention) is a necessary though not sufficient condition
for the existence of a ΛΛ bound state.
If a ΛΛ resonance exists near the threshold, that would

induce large correlations between two Λs at small relative
momentum [12,30]. For the ΛΛ system below the NΞ
and ΣΣ thresholds (k < 161 MeV=c), the FSI effect is
included in the correlation function through the s-wave
amplitude [31],

fðkÞ ¼ 1

k cot δ − ik
; ð6Þ

where k and δ are relative momentum and s-wave phase
shift, respectively. The effective-range approximation for
k cot δ is

k cot δ ¼ 1

a0
þ reff

k2

2
: ð7Þ

Equation (6) should satisfy the single-channel unitarity
condition ImfðkÞ ¼ kjfðkÞj2 with real parameters a0 and
reff . When the scattering amplitude is saturated by a
resonance, it can be rewritten [32] in the form

fðkÞ ¼ 1

ðk20 − k2Þ=ð2μγÞ − ik
: ð8Þ

Comparing the above to Eqs. (6) and (7), one sees that
1=a0 ¼ k20=ð2μγÞ and reff ¼ −1=μγ, where k0, μ, and γ are
the relative momentum where the resonance occurs, the
reduced mass, and a positive constant, respectively. The
scattering length (effective range) becomes positive (neg-
ative) so that the k cot δ term vanishes at k ¼ k0 [33]. The
signs of a0 and reff obtained from the fit to our data
contradict Eq. (8), which suggests the nonexistence of a ΛΛ
resonance saturating the s-wave below the NΞ and ΣΣ
thresholds. More discussion on the existence of H as a
resonance pole can be found in [26].
Assuming that H dibaryons are stable against strong

decay of Λ, and are produced through coalescence of ΛΛ
pairs, the yield for the H dibaryon can be related to the Λ
yield by d2NH=2πpTdpTdy ¼ 16Bðd2NΛ=2πpTdpTdyÞ2,
where B is a constant known as the coalescence coefficient.
From pure phase space considerations, the coalescence
rate is proportional to Q3 [34]. For a weakly bound or
deuteronlike bound state H, the ΛΛ correlation below the
coalescence length Q would be depleted. Our data show
no depletion in the correlation strength in our measured
region, which indicates that the value of Q at coalescence
for the H dibaryon, if it exists, must be below
0.07 GeV=c, where we no longer have significant statis-
tics. Therefore, because the deuteron coalescence
coefficient B ¼ ð4.0% 2.0Þ × 10−4 ðGeV=cÞ2 [35,36] for
a Q of approximately 0.22 GeV=c, we estimate that the
H dibaryon must have B less than ð1.29% 0.64Þ ×
10−5 ðGeV=cÞ2 for Q < 0.07 GeV=c. The corresponding
upper limit for pT-integrated dNH=dy is ð1.23% 0.47stat %
0.61systÞ × 10−4 if the coalescence mechanism applies to
both the deuteron and the hypothetical H particle.
In summary, we report the first measurement of the ΛΛ

correlation function in heavy-ion collisions for Auþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured correlation strength at
Q ¼ 0, CðQ ¼ 0Þ is greater than 0.5 (the expectation from
quantum statistics alone). In addition to the normal ΛΛ
correlation function, a Gaussian term is required to fit the
data, possibly due to residual correlations. The extracted
Gaussian source radius is compatible with the expectation
from previous measurements of pion, kaon, and pΛ
correlations [22,24,25]. The model fits to data suggest that
the strength of the ΛΛ interaction is weak. Numerical
analysis of the final-state interaction effect using an s-wave
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FIG. 4 (color online). The ΛΛ interaction parameters from
this experiment (solid circle), where the shaded band represents
the systematic error. The interaction parameters from pp, pn
singlet (s), and triplet (t) states, and from nn, pΛ (s), and pΛ (t)
states are shown as open markers [27]. Also, the ΛΛ interaction
parameters that reproduce the NAGARA event are shown
as open stars [28,29].

PRL 114, 022301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 JANUARY 2015

022301-6

conclusion about an attractive or a repulsive potential is
limited by our statistics and is model dependent. However,
all model fits to data suggest that a rather weak interaction
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from the model fit are shown in Fig. 4. For comparison,
interaction parameters for pp, nn, and pn singlet (s) and
triplet (t) states, as well as for pΛ singlet (s) and triplet (t)
states, are also shown in Fig. 4 [27]. It is observed that
jaΛΛj < japΛj < jaNN j. The LL analytical model gives a
negative a0 parameter and favors a slightly repulsive
interaction in our convention which is different from a
weak attractive potential extracted from the NAGARA
event and the KEK result [13,28,29]. The fit parameters are
still limited by statistics and our fitted a0 is 1.6σ from a sign
change. A negative sign for the scattering length (in our
convention) is a necessary though not sufficient condition
for the existence of a ΛΛ bound state.
If a ΛΛ resonance exists near the threshold, that would

induce large correlations between two Λs at small relative
momentum [12,30]. For the ΛΛ system below the NΞ
and ΣΣ thresholds (k < 161 MeV=c), the FSI effect is
included in the correlation function through the s-wave
amplitude [31],
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k cot δ is
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condition ImfðkÞ ¼ kjfðkÞj2 with real parameters a0 and
reff . When the scattering amplitude is saturated by a
resonance, it can be rewritten [32] in the form
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Comparing the above to Eqs. (6) and (7), one sees that
1=a0 ¼ k20=ð2μγÞ and reff ¼ −1=μγ, where k0, μ, and γ are
the relative momentum where the resonance occurs, the
reduced mass, and a positive constant, respectively. The
scattering length (effective range) becomes positive (neg-
ative) so that the k cot δ term vanishes at k ¼ k0 [33]. The
signs of a0 and reff obtained from the fit to our data
contradict Eq. (8), which suggests the nonexistence of a ΛΛ
resonance saturating the s-wave below the NΞ and ΣΣ
thresholds. More discussion on the existence of H as a
resonance pole can be found in [26].
Assuming that H dibaryons are stable against strong

decay of Λ, and are produced through coalescence of ΛΛ
pairs, the yield for the H dibaryon can be related to the Λ
yield by d2NH=2πpTdpTdy ¼ 16Bðd2NΛ=2πpTdpTdyÞ2,
where B is a constant known as the coalescence coefficient.
From pure phase space considerations, the coalescence
rate is proportional to Q3 [34]. For a weakly bound or
deuteronlike bound state H, the ΛΛ correlation below the
coalescence length Q would be depleted. Our data show
no depletion in the correlation strength in our measured
region, which indicates that the value of Q at coalescence
for the H dibaryon, if it exists, must be below
0.07 GeV=c, where we no longer have significant statis-
tics. Therefore, because the deuteron coalescence
coefficient B ¼ ð4.0% 2.0Þ × 10−4 ðGeV=cÞ2 [35,36] for
a Q of approximately 0.22 GeV=c, we estimate that the
H dibaryon must have B less than ð1.29% 0.64Þ ×
10−5 ðGeV=cÞ2 for Q < 0.07 GeV=c. The corresponding
upper limit for pT-integrated dNH=dy is ð1.23% 0.47stat %
0.61systÞ × 10−4 if the coalescence mechanism applies to
both the deuteron and the hypothetical H particle.
In summary, we report the first measurement of the ΛΛ

correlation function in heavy-ion collisions for Auþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured correlation strength at
Q ¼ 0, CðQ ¼ 0Þ is greater than 0.5 (the expectation from
quantum statistics alone). In addition to the normal ΛΛ
correlation function, a Gaussian term is required to fit the
data, possibly due to residual correlations. The extracted
Gaussian source radius is compatible with the expectation
from previous measurements of pion, kaon, and pΛ
correlations [22,24,25]. The model fits to data suggest that
the strength of the ΛΛ interaction is weak. Numerical
analysis of the final-state interaction effect using an s-wave
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FIG. 4 (color online). The ΛΛ interaction parameters from
this experiment (solid circle), where the shaded band represents
the systematic error. The interaction parameters from pp, pn
singlet (s), and triplet (t) states, and from nn, pΛ (s), and pΛ (t)
states are shown as open markers [27]. Also, the ΛΛ interaction
parameters that reproduce the NAGARA event are shown
as open stars [28,29].
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Thank you!


