Study baryon interactions via hyperon correlation analysis at RHIC-STAR

Jinhui Chen

Shanghai Institute of Applied Physics, CAS

"QCD Phase Structure III", June 6-9, 2016, CCNU, Wuhan, China

STAR

Outline

- **Introduction**
 - Exotic hadrons strangeness (S) sector
- Measurements from STAR
 - H-dibaryon analysis
 - Preliminary results on $N\Omega$ dibaryon analysis
- **Summary**

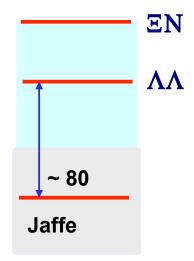
Motivation

☑ Baryon-baryon interaction including strangeness

- Possible hyperon matter in the core of a neutron star
- Exotic hadrons (non-qq, non-qqq)

☑ Inputs from theory

– Lattice QCD: physical point results coming soon?

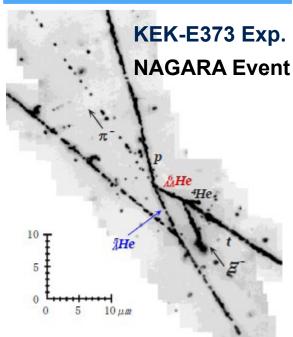


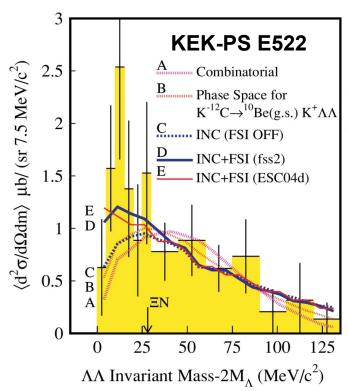
Introduction on H-dibaryon

In 1977, Jaffe predicted that double strange dibaryon made of six quark (uuddss) may be deeply bound below the Lambda-Lambda threshold due to strong attraction from color magnetic interaction based on the bag model calculation

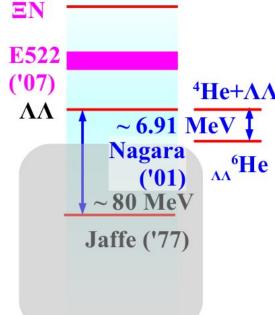
☑ Properties : J^P =0+, mass : (1.9-2.8) GeV/c²

$$\psi(\mathbf{H}) = \sqrt{\frac{1}{8}}\psi(\Lambda\Lambda) + \sqrt{\frac{4}{8}}\psi(\Sigma\Sigma) - \sqrt{\frac{3}{8}}\psi(\Sigma\Sigma)$$


Since prediction, dedicated measurements have been performed to look for the H dibaryon signal, but its existence remains an open question

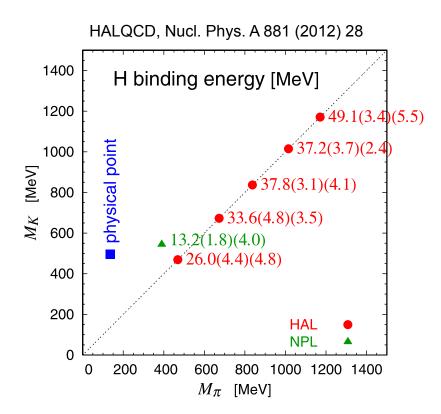

H-dibaryon (1)

- **MAGARA** event measurement of $\Lambda\Lambda^6H$ —> $\Lambda\Lambda+^4He$ (BE ~ 6.91 MeV)
- **MEK-E522** observation of 2.6σ enhancement for $\Lambda\Lambda$ invariant mass spectra resonance!

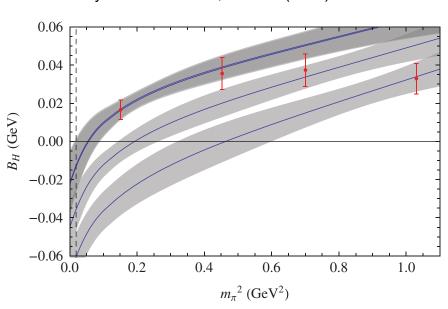

$$^{12}C + \Xi^{-} \rightarrow {}^{6}_{\Lambda\Lambda}He + {}^{4}He + t$$
$${}^{6}_{\Lambda\Lambda}He \rightarrow {}^{5}_{\Lambda}He + p + \pi^{-}$$

Phys. Rev. Lett. 87,212502 (2001)

Phys. Rev. C 75, 022201(R) (2007)



H-dibaryon (2)


✓ Lattice QCD calculations – H-particle is indeed bound at quark mass above the physics range

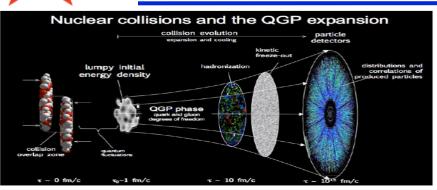
NPLQCD: Phys. Rev. Lett. 106,162001 (2011), HALQCD: Phys. Rev. Lett. 106, 162002 (2011)...

Chiral extrapolation to physical pion mass leads to unbound H Phys. Rev. Lett. 107, 092004 (2011), Phys. Lett. B 706 (2011) 100

P.E. Shanahan, A.W. Thomas and R.D. Young, Phys. Rev. Lett. 107, 092004 (2011)

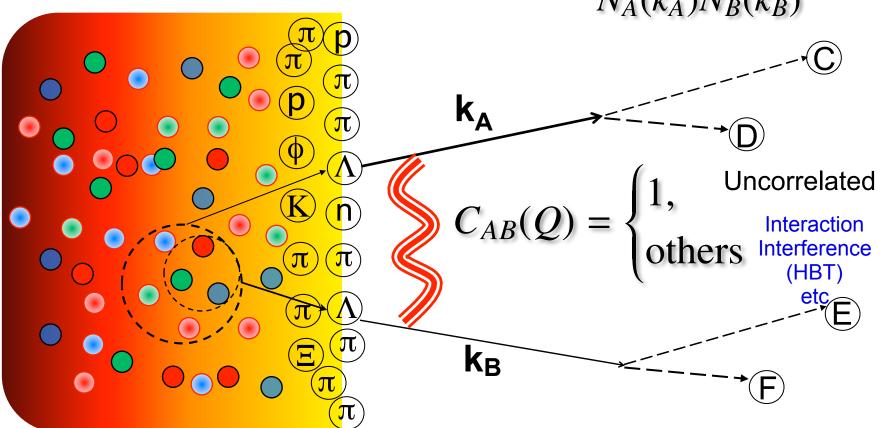
Possible venues for H-dibaryon search

Systematic study of double strangeness systems

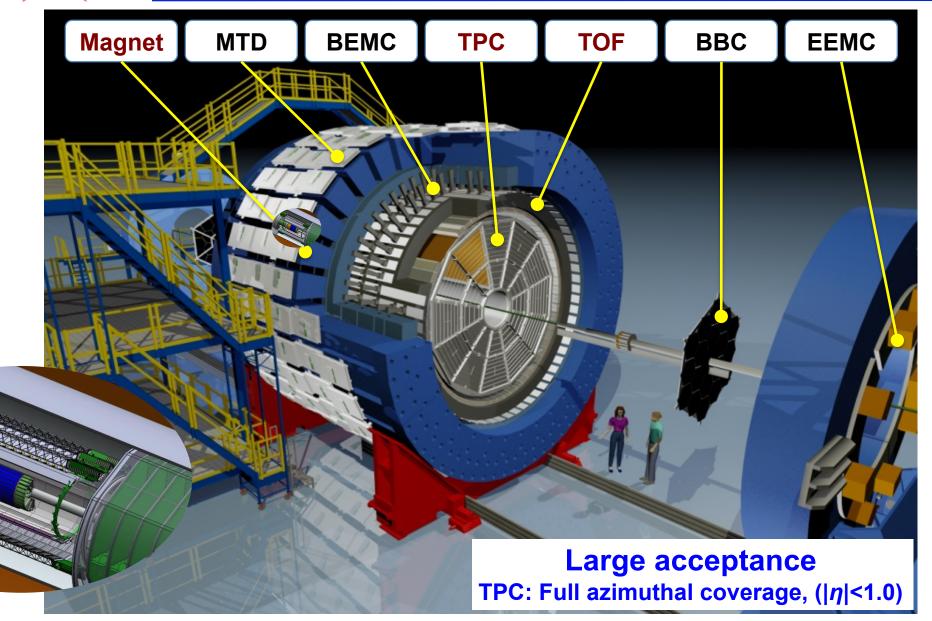

Binding energies
 Future experiments at J-PARC, KEK

Meavy Ion Collisions

- Study two particle correlations
- Invariant mass
 High statistics data from Relativistic Heavy Ion Collider (RHIC) &
 Large Hadron Collider (LHC)

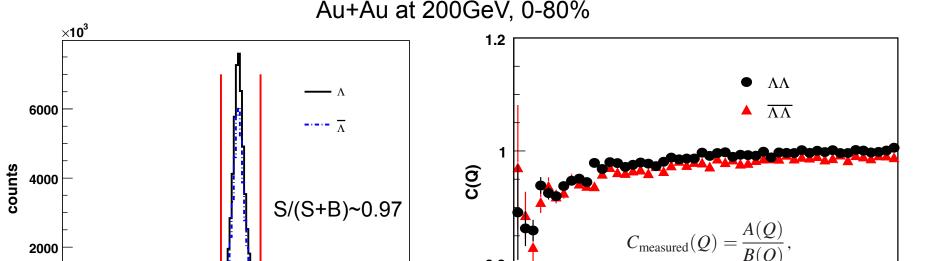


Particle correlation in HIC


- ☑ Baryon interaction via hyperon correlation

$$C_{AB}(Q) = \frac{N_{AB}^{\text{pair}}(k_A, k_B)}{N_A(k_A)N_B(k_B)}$$

The STAR detector at RHIC



2000

1.08

Measurements from STAR detector

STAR Col. Phys. Rev. Lett. **114**, 022301(2015)

0.8

0.2

0.4

Q (GeV/c)

0.6

8.0

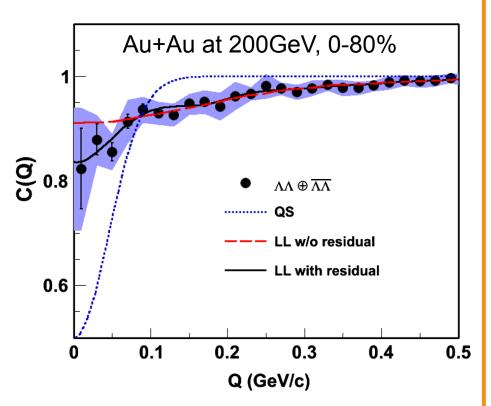
- STAR measure a clean Lambda signal with excellent signal to background ratio. Lambda-Lambda correlation function and its anti-particle's are found to be nearly identical.
- The following slides show combined results of Lambda and anti-Lambda to increase the statistics.

1.12

Mass (GeV/c²)

1.1

1.14


Lambda-Lambda correlation function

Fit using Lednicky-Lyuboshitz analytical model

CF=N(1+
$$\lambda$$
[$\sum_{S}\rho_{S}$ (-1)^Sexp(- $r_{0}^{2}Q^{2}$)+ Δ CF^{FSI}+ a_{res} exp(- $Q^{2}r_{res}^{2}$)])

N- normalization, λ - suppression parameter

SJNP 35 (1982) 770

STAR Col. Phys. Rev. Lett. 114, 022301(2015)

$$\mathbf{CF}(Q=0) > \mathbf{CF}_{QS}(Q=0)$$

- interaction is attractive

MHigh Q tail -> residual correlations from Σ^0, Ξ

Interaction parameters:

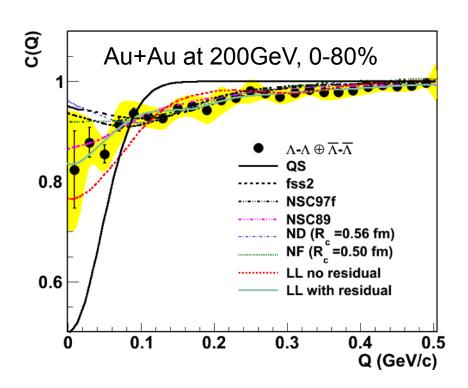
$$\chi^2/NDF = 0.56$$

Emission radius-

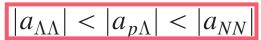
$$r_0 = 2.96 \pm 0.38^{+0.96}_{-0.02} \text{ fm}$$

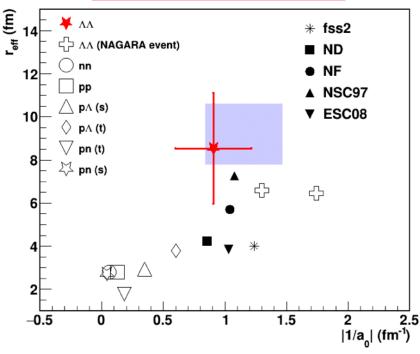
Scattering length-

$$a_0 = -1.10 \pm 0.37^{+0.68}_{-0.08}$$
 fm,


- Effective range-

$$r_{\rm eff} = 8.52 \pm 2.56^{+2.09}_{-0.74} \text{ fm},$$



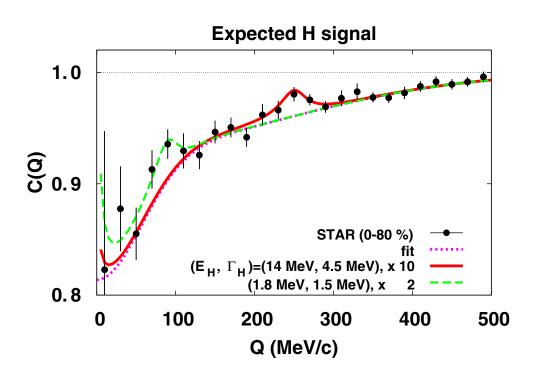

Lambda-Lambda interaction potential

STAR Col. Phys. Rev. Lett. **114**, 022301(2015)

All model fits to data suggest that a rather weak interaction is present between $\Lambda \Lambda$ pairs

t → for triplet state s → for singlet state

n-n → Phys. Lett B, 80 (1979) 187 p-n → Phys. Rev. C 66, 047001(2002) p-p → Mod. Phys. 39 (1967) 584 p- Λ → Phys. Rev. Lett. 83, 3138(1999) $\Lambda\Lambda$ → Phys. Rev. C 66, 024007(2002) $\Lambda\Lambda$ → Nucl. Phys. A 707 (2002) 491



Discussion on H-signal from model

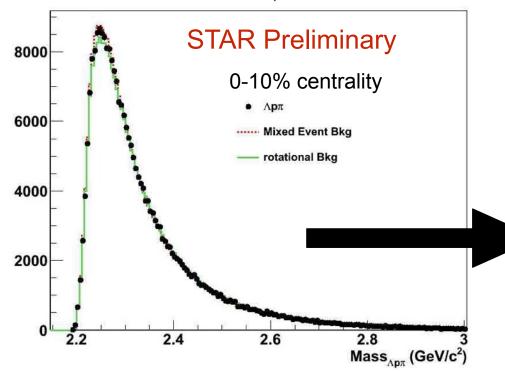
Assuming that H dibaryons are stable against strong decay of Lambda, and are produced through coalescence of Lambda-Lambda pairs:

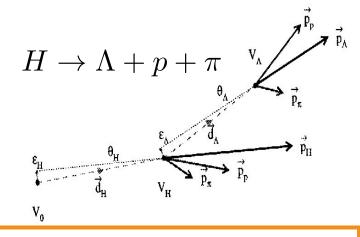
$$d^{2}N_{H}/2\pi p_{T}dp_{T}dy = 16B(d^{2}N_{\Lambda}/2\pi p_{T}dp_{T}dy)^{2}$$

The integrated yield: $dN_H/dy = (1.23 \pm 0.47_{stat} \pm 0.61_{syst}) \times 10^{-4}$

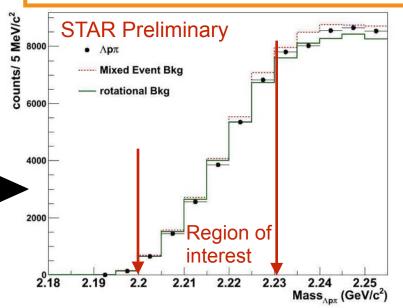
- On the basis of (a₀,reff) from current data, the existence of H-particle as bound state of Lambda-Lambda is not preferred.
- On the resonance pole: high statistics is necessary to confirm or rule out the existence at low Q region.

K. Morita, T. Furumoto and A. Ohnishi, Phys. Rev. C 91, 024916(2015)




H-dibaryon invariant mass distribution

Topological reconstruction of $\Lambda p\pi$ to look for H


- Mass range: $2.2 < m_H < 2.231 \text{ GeV/c}^2$

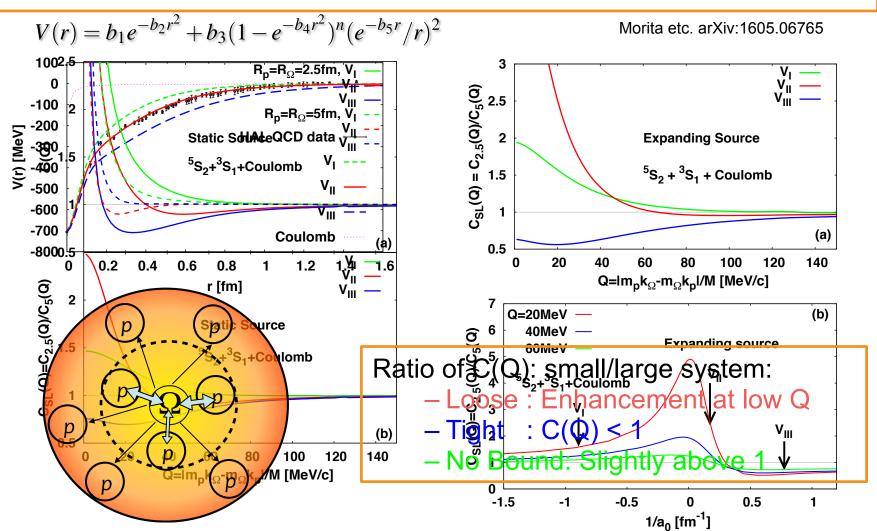
N. Shah for STAR Col. Nucl. Phys. A 914 (2013) 410 Au + Au collisions at $\sqrt{s_{NN}} = 200 \,\text{GeV}$.

 No visible signal with respect to mixed event or rotational background

Move onto the Strangeness = -3 dibaryon

Strangeness -3 is stable against strong decay, from MIT bag and potential model calculation, N-Omega with I=1/2, J=2, E_B=140-250MeV

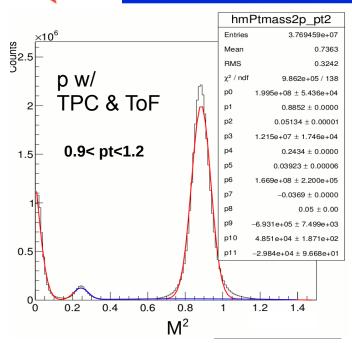
F. Wang et al., : PRL 59,627(1987); PRC 69, 065207(2004); 83, 015202(2011); 92,065202(2015)

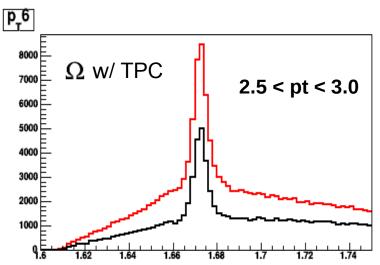

MAL-QCD calculation find a bound state of N-Omega system, potential through Nambu-Bethe-Salpeter wave function

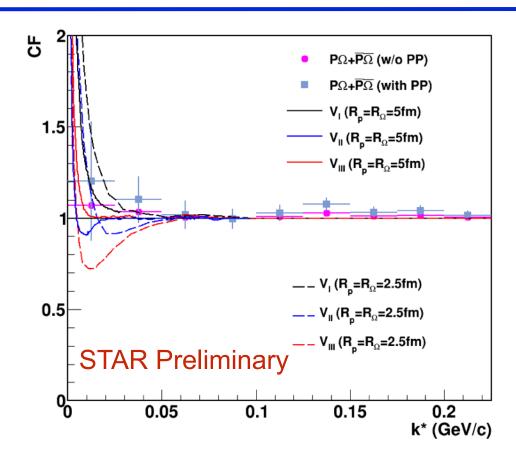
NPA 928, 89(2014)

$$B_{N\Omega} = 18.9(5.0)(^{+12.1}_{-1.8}) \text{ MeV},$$

 $a_{N\Omega} = -1.28(0.13)(^{+0.14}_{-0.15}) \text{ fm},$
 $(r_e)_{N\Omega} = 0.499(0.026)(^{+0.029}_{-0.048}) \text{ fm}.$


STAR Proposal on source size dependence analysis


Starting from the N-Omega potential from HAL QCD data, Morita etc. propose a source size analysis of C(Q) to extract the strong p-Omega interaction w/o much contamination from Coulomb attraction.



How to measure experimentally?

- Preliminary results with larger stat. uncertainty
- System size analysis (40-80% vs. 0-40%) is on going

Summary

- $oldsymbol{M}$ $\Lambda\Lambda$ interaction is indeed attractive
- Marketion is not strong enough to form stable H-dibaryon
- \overline{M} Interaction parameters: $1/a_0 < -0.5$ fm⁻¹ and $r_{eff} > 3$ fm
- Measured interaction parameter gives indication towards non-existence of $\Lambda\Lambda$ resonance below the $N\Xi$ and $\Sigma\Sigma$ threshold