AdS/CFT & Some of its Applications

Defu Hou (侯德富)

Central China Normal University

With HC Ren, ZQ Zhang, SX Chu, Yan Wu

QCD Phase structure III, wuhan June 6-9

Outlines

- Introduction and motivation
- Heavy quark potential from AdS/CFT
- * Jet quenching parameter from AdS/CFT
- *** G-L free energy of Holographic Superconductor**
- *** Summary**

Motivations

Many interesting phenomena in QCD lie in strongly coulped region

Experiments aspect:

Heavy-ion Collisions@ RHIC & LHC:

sQGP-- the almost perfect fluid known $\eta/s > = .1 - .2 << 1$

* CDM : High T_c superconductor Cold atoms New theoretical techniques needed!

Lattice QCD

Continuum

- (1) Effective Models: (p)NJL, (p)QMC...
- (2) Field Theory: DS E , FRGE, HT(d)L , Chiral Perturbation, Sum rules
- (3) AdS/CFT, AdS/QCD

AdS/CFT has been applied widely

- * Viscosity ratio, η/s . $\frac{\eta}{1} = \frac{1}{1}$
- * Thermodynamics.

Jet quenching

*

$$s = \frac{4\pi}{4}s^{(0)}$$

Policastro, Son and Starinet

Gubser

Liu, Rajagopal and Wiederman

***** Photon production

Yaffe et al

- Heavy quarkonium (hard probe)
- Maldacena
- Thermalization , phase transition
- * Hardron spectrum (AdS/QCD) (M. Huang's talk)
- * AdS/CDM Herzog, Gubser, Hartnoll

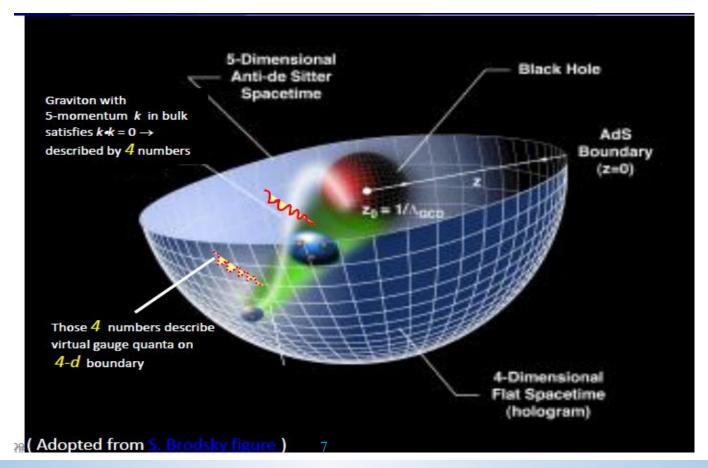
AdS/CFT corerspondence

4dim. Large-Nc strongly coupled SU(Nc) N=4 SYM (finite T).

Type II B Super String theory on AdS5-BH×S5

Basic Idea For AdS/CFT

- Certain configuration in Higher Dimensional "AdS" Space dual to a Quantum (Conformal) Field Theory on some surface in that space
- Some complicated Field theory calculations become simple "geometric" problems in higher dimensions



Maldacena conjecture: Maldacena, Witten

 $N = 4 \text{ SUSY YM on the boundary} \iff \text{TypeIIB string theory in the bulk}$ 't Hooft coupling $\lambda \equiv N_c g_{YM}^2 = \frac{1}{{\alpha'}^2} \quad (\text{string tension} = \frac{1}{2\pi\alpha'})$ $\frac{\lambda}{N_c} = 4\pi g_s$ $< e^{\int d^4 x \phi_0(x) O(x)} > = Z_{\text{string}}[\phi(x,0) = \phi_0(x)]$

In the limit $N_c \to \infty$ and $\lambda \to \infty$ $Z_{\text{string}}[\phi(x,0) = \phi_0(x)] = e^{-I_{\text{sugra}}[\phi]}|_{\phi(x,0) = \phi_0(x)}$ $I_{\text{sugra}}[\phi] = \text{classical supergravity action}$

Heavy quark potential

The gravity dual of a Wilson loop at large N_c and large λ

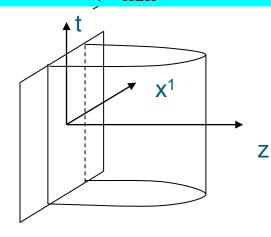
$$\operatorname{tr} < W(C) >= e^{-\sqrt{\lambda}S_{\min}[C]}$$

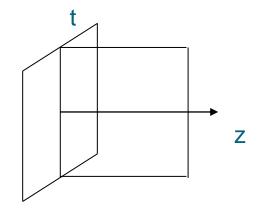
the min.area of string world sheet in the AdS_5

$$W(C) = Pe^{-i \oint_C dx^{\mu} A_{\mu}(x)}$$

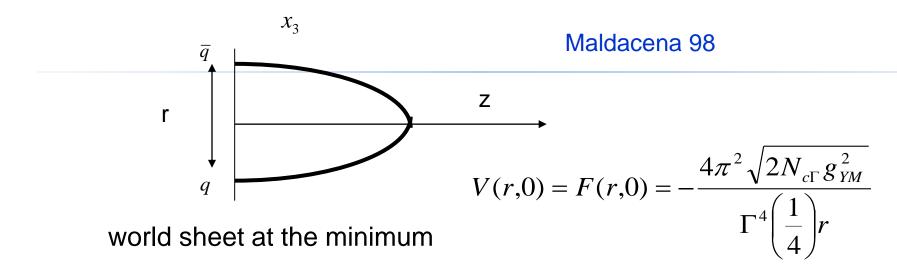
Heavy quark potential probes confinement hadronic phase and meson melting in plasma

 $F(r,T) = T(S_{\min}[\text{parallel lines}] - 2S_{\min}[\text{single line}])$

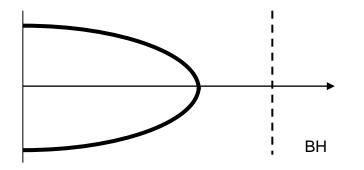




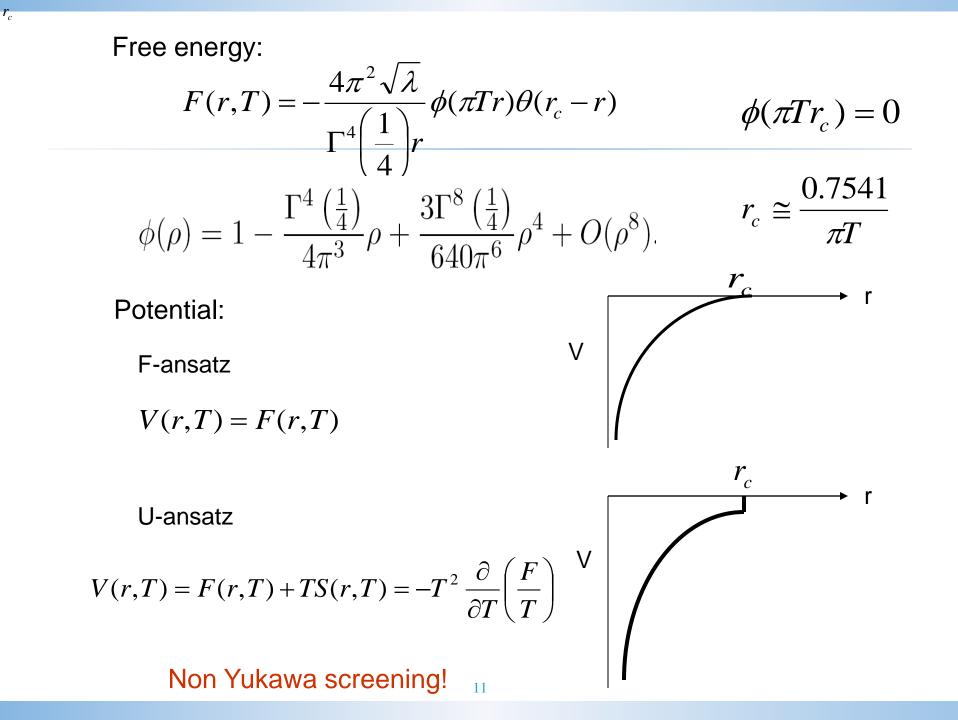
Heavy quark potential at zero temperature



Heavy quark potential at a nonzero temperature



Rey, Theisen and Yee



Heavy quarkonium Dissociate Temperature

Hou , Ren, JHEP0801:029

ansatz	$J/\psi(1S)$	$J/\psi(2S)$	$J/\psi(1P)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(1P)$
F	67-124	15-28	13-25	197 - 364	44-81	40-73
U	143 - 265	27-50	31-58	421-780	80-148	92 - 171

With deformed metric

ansatz	J/ψ	Υ
F	NA	235-385
U	219-322	459-780

ansatz		$J/\psi(\text{lattice})$	$\Upsilon(holographic)$	$\Upsilon(\text{lattice})$
F	T_d/T_c NA	1.1	1.3-2.1	2.3
U	1.2-1.7	2.0	2.5 - 4.2	4.5

Relativistic correction

Guo, Shi, Zhuang ,PLB718 (2012)

Wu, Hou, Ren, PRC 87 (2013),025203

	$car{c}$		Ŀ	$b\overline{b}$	
	$\lambda = 5.5$	$\lambda = 6\pi$	$\lambda = 5.5$	$\lambda = 6\pi$	
1s	162.5 <mark>4</mark>	387.54	478.76	1139.11	
2s	29.15	62.75	85.67	184.44	
1p	32.04	62.14	94.18	182.66	

This lists the results of $T_0 + \delta_1 T$ in MeV's, that we just considered the correction of the p^4 term, which increased the dissociation temperature.

Relativistic correction

Wu, Hou, Ren, PRC 87 (2013),025203

	$car{c}$		$b\overline{b}$	5
	$\lambda = 5.5$	$\lambda = 6\pi$	$\lambda = 5.5$	$\lambda = 6\pi$
$1s_0^1$	130.79	188.65	385.63	555.58
$1s_1^3$	130.79	188.65	385.63	555.58
$2s_0^1$	26.71	48.16	79.15	142.59
$2s_{1}^{3}$	26.71	48.16	79.15	142.59
$1p_1^1$	31.53	61.33	93.54	180.79
$1p_0^3$	32.65	68.48	96.85	201.80
$1p_1^3$	32.09	64.90	95.20	191.30
$1p_{2}^{3}$	30.96	57.76	91.89	170.29

We wrote the state as: nL_J^{2S+1}

For J/Psi,the magnitude of the correction ranges from 8% to 30%!

Higher order corrections

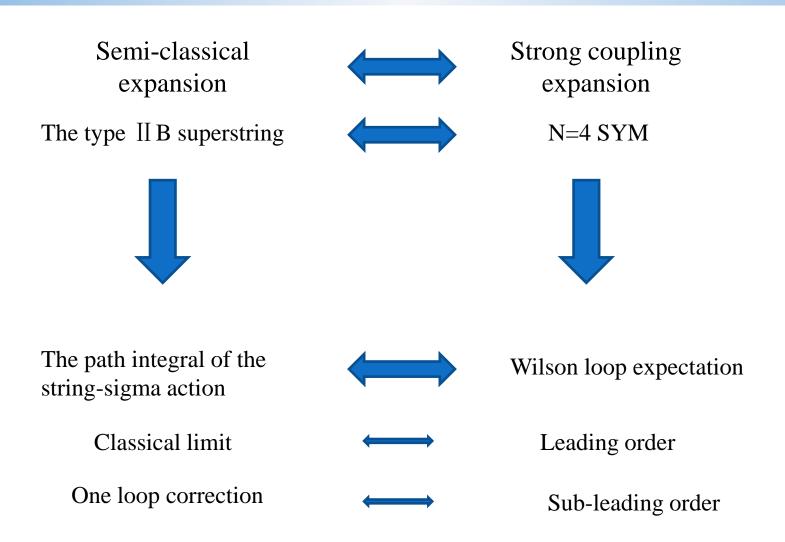
Leading orders are strictly valid when $N_c \rightarrow \infty$, $\lambda \rightarrow \infty$

• For real QCD. The t'Hooft coupling is not infinity

 $5.5 < \lambda < 6\pi$.

,

- The super gravity correction to the AdS-Schwarschild metric is of order $O(\lambda^{-\frac{3}{2}})$
- The fluctuation around the minimum world sheet presents at all T, and is of order $-\frac{1}{O(\lambda^{-2})}$ (more important)



Gravity dual of a Wilson loop at finite coupling

Metsaev and Tseytlin

$$W[C] \equiv <\exp\left(i\oint_{C} dx^{\mu}A_{\mu}\right) > = \int \left[dX\right] \left[d\theta\right] \exp\left[\frac{i}{2\pi\alpha'}S(X,\theta)\right]$$

Strong coupling expansion

Semi-classical expansion

$$\ln W[C] = i\sqrt{\lambda} \left[S(\overline{X}, 0) + \frac{b[C]}{\sqrt{\lambda}} + \dots \right]$$

 $X^{\mu} = \overline{X}^{\mu} + \delta X^{\mu}, \qquad \theta \neq 0 \qquad \qquad g_{ij} = \overline{g}_{ij} + \delta g_{ij}$

 \overline{X}

Partition function at finite T with fluctuations

Straight line:

Hou, Liu, Ren, PRD80,2009

$$Z = Z_B Z_F = \frac{\det^2 \left(-\nabla_+^2 + 1 + \frac{1}{4} R^{(2)} \right) \det^2 \left(-\nabla_-^2 + 1 + \frac{1}{4} R^{(2)} \right)}{\det^{\frac{3}{2}} \left(-\nabla^2 + \frac{8}{3} + \frac{1}{2} R^{(2)} \right) \det^{\frac{5}{2}} (-\nabla^2)}$$

Parallel lines:

$$Z = \frac{\det^2 \left(-\nabla_+^2 + 1 + \frac{1}{4} R^{(2)} \right) \det^2 \left(-\nabla_-^2 + 1 + \frac{1}{4} R^{(2)} \right)}{\det^{\frac{1}{2}} \left(-\nabla^2 + 4 + R^{(2)} - 2\delta \right) \det(-\nabla^2 + 2 + \delta) \det^{\frac{5}{2}} (-\nabla^2)}$$

Next Leading order Results

Chu, Hou, Ren, JHEP0908, (2009)

$$V(r) \approx -\frac{4\pi^2}{\Gamma^4(\frac{1}{4})} \frac{\sqrt{\lambda}}{r} \left[1 - \frac{1.33460}{\sqrt{\lambda}} + O(\frac{1}{\lambda})\right] \qquad \text{for } \lambda \gg 1$$

Confirmed by Forini JHEP 1011 (2010) 079

$$a_1 = \frac{5\pi}{12} - 3\ln 2 + \frac{2\mathbb{K}}{\pi} \left(\mathbb{K} - \sqrt{2} \left(\pi + \ln 2 \right) + \mathcal{I}^{\text{num}} \right)$$

= -1.33459530528060077364...,

$$-1.33460$$

$$V_{\text{ladder}}(r) = -\frac{\sqrt{\lambda}}{\pi r} \left(1 - \frac{\pi}{\sqrt{\lambda}}\right).$$

Erickson etc. NPB582,2000

Next leading order potential at finite T

Zhang,Hou, Ren,Yin JHEP07:035 (2011)

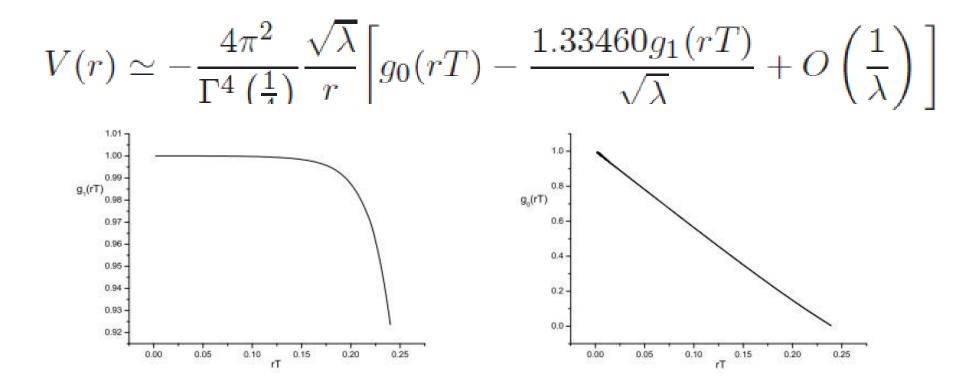
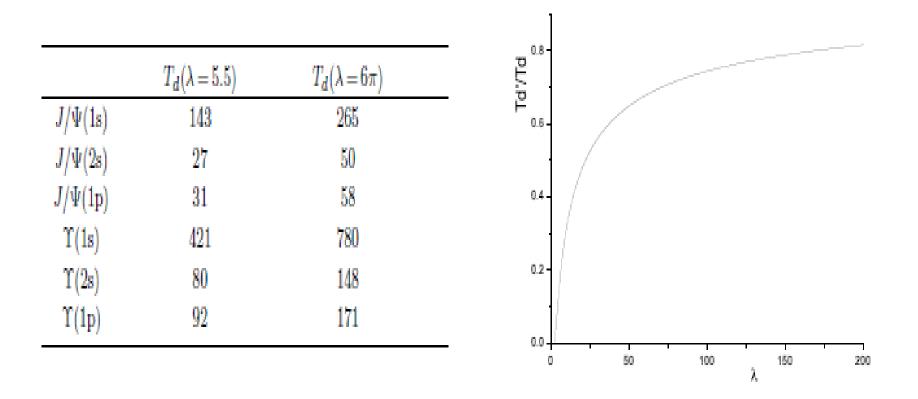


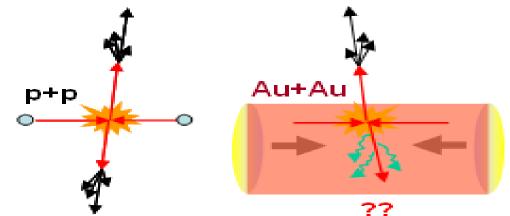
Figure 3. The left curve represents $g_1(rT)$, while the right represents $g_0(rT)$.

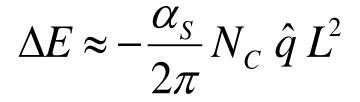
Heavy quarkonium Dissociate Td with NL potential

ZQ Zhang , Yan Wu, Defu Hou, 2015



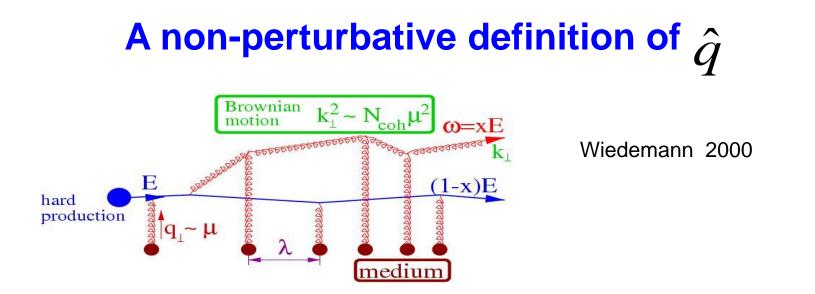
Jet quenching in QGP





Baier, Dokshitzer, Mueller, Peigne, Schiff (1996):

 \hat{q} reflects the ability of the medium to "quench" jets.



$$W^{A}[C] = \exp\left(-\frac{\hat{q}L_{L}^{2}}{4\sqrt{2}}\right)$$

$$L^{-} >> 1/T >> L$$

т

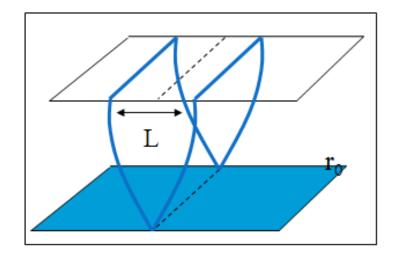
н

Leading order jet quenching parameter from AdS/CFT

Liu, Rajagopal & Wiedemann, PRL,97,182301(2006)

$$\hat{q_0} = \frac{\pi^{3/2} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \sqrt{\lambda} T^3$$

Dipole amplitude: two parallel Wilson lines in the light cone:

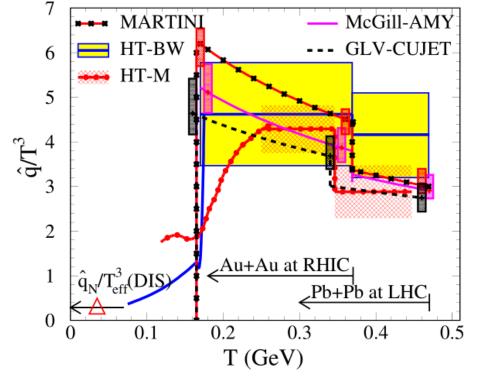


NL correction to jet quenching parameter

Zhang, Hou, Ren, JHEP1301 (2013) 032

$$\hat{q} = \frac{\pi^{3/2} \Gamma(\frac{3}{4})}{\Gamma(\frac{5}{4})} \sqrt{\lambda} T^3 [1 - 1.97 \lambda^{-1/2} + O(\lambda^{-1})]$$

Agrees with that from data



Jet Collaboration, PRC 90,014909(2014)

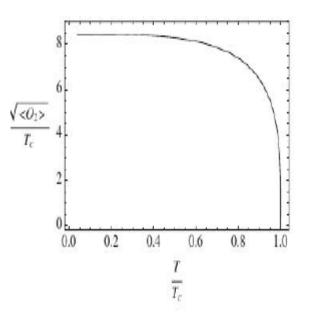
G-L free energy of HSC

Gubser, Horowitz, Hartnoll, Herzog PRD78 (2008); PRL101 (2008)

$$S_{\text{HSC}} = \int \mathrm{d}^{d+1}x \sqrt{|g|} \left(R - 2\Lambda - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |\nabla\psi - iqA\psi|^2 - V(|\psi|) \right)$$
$$V(|\Psi|) = m^2 \Psi^2$$

Boundary	Bulk
Thermodynamic Temperature	Hawking Temperature
Order-Parameter	Hairy Black Hole

 $V(|\Psi|$



G-L free energy of HSC

Yin, Hou, Ren, PRD91 (2015)

$$\omega = -rac{\mu^2}{2z_k} + a_{\omega_k} \left< \mathcal{O}_{\vartriangle} \right>^2 + rac{1}{2} b_{\omega_k} \left< \mathcal{O}_{\vartriangle} \right>^4$$

Δ	Grand Canonical Ensemble	Canonical Ensemble
	$\langle O_1 \rangle = 16.37 T_c \sqrt{1 - \frac{T}{T_c}}$	$\langle {\cal O}_1 angle = 9.462 \ T_e \sqrt{1 - rac{T}{T_e}}$
1	$a_{\text{ock}} = 1.696 (T - T_c);$	$a_{cx} = 3.391 (T - T_c);$
	$b_{\rm GCB} = 6.33 \times 10^{-3} \frac{1}{T_c}$	${\rm b_{CB}}=3.788\times 10^{-2}~{}^1_{T_c}$
	$\omega_{\rm scale} = -45.568 \; T_c^3 - 227.204 \; T_c (T_c - T)$	$\mathfrak{f}_{\rm on-data} = 45.568 \; T_c^3 - 512.398 \; T_c (T_c - T)^2$
	$\langle O_2 \rangle = 163.68 T_c^2 \sqrt{1 - \frac{T}{T_c}}$	$\langle \mathcal{O}_2 angle = extsf{143.574} \ T_c^2 \sqrt{1 - frac{T}{T_c}}$
2	$a_{ocs} = 0.0725 \frac{1}{T_c} \left(\frac{T}{T_c} - 1 \right);$	$a_{\rm CE} = 0.145 \frac{1}{T_c} \left(\frac{T}{T_c} - 1 \right)$
	$b_{ocs} = 2.706 \times 10^{-6} \frac{1}{T_{z}^{5}}$	$b_{\rm cx} = 7.0346 \times 10^{-6} \frac{1}{T_c^5}$
	$\omega_{\rm so-dad1} = -606.896 \; T_c^3 - 971.034 \; T_c (T_c - T)^2$	$\mathfrak{f}_{\rm so-dull} = 606.896 \; T_c^3 - 1493.898 \; T_c (T_c - T)^2$

BCS vs Holographic Superconductor Yin, Hou, Ren, PRD91 (2015)

Holographic Superconductor

$$\begin{array}{ll} \mbox{Grand Canonical} & \mbox{Canonical} \\ \langle \mathcal{O}_1 \rangle = 16.37 T_c \sqrt{1 - \frac{T}{T_c}} & \ \ \langle O_1 \rangle = 9.462 T_c \sqrt{1 - \frac{T}{T_c}} \end{array}$$

BCS theory

$$\Delta = \sqrt{-\frac{a}{b}} = T_c \sqrt{\frac{8\pi^2}{7\zeta(3)} \left(1 - \frac{T}{T_c}\right)} = 3.0633T_c \sqrt{1 - \frac{T}{T_c}}$$

Summary and discussion

AdS/CFT provides a useful way to address the physics at strong coupling .

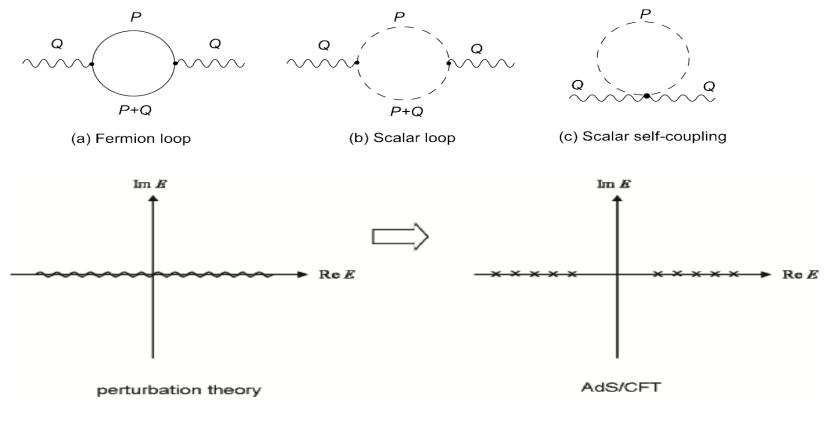
Heavy quark potential & Jet quenching parameter are computed up to sub-leading order from AdS/CFT

We estimated the melting T with holographic potential and its relativitic correction

The GL free-energy of HSC are derived

The applicability of those results demands phenomenological work to explain them in a way which can be translated to real QCD. Thanks

2-point correlators from perturbation



Continuum spectrum

Bound sates

JHEP 1007:042,2010, Hou, Liu, Li, Ren

Shear viscosity from AdS/CFT

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$$

$$\sigma_{abs} = -\frac{16\pi G}{\omega} \operatorname{Im} G^{R}(\omega)$$

$$= \frac{8\pi G}{\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle \right\}$$

$$\eta = \frac{\sigma_{abs}(0)}{16\pi G}$$

Graviton's component h_y^x obeys equation for a minimally coupled massless scalar. But then $\sigma_{abs}(0) = A_H$

Since the entropy (density) is $s = A_H/4G$

$$\frac{\eta}{s} = \frac{1}{4\pi}$$
 D. Son, P. Kovtun, A.S

Correlation function from AdS/CFT

 Solving the Maxwell equation and the linearized Einstein equation subject to the boundary conditions

$$S_{\text{sugr}} = S_{\text{sugr}}^{(0)} + \frac{1}{2} \int_{u=0} d^4 x \int_{u=0} d^4 y \left[\mathcal{C}_{\mu\nu}(x-y) \bar{A}^{\mu}(x) \bar{A}^{\nu}(y) + \frac{1}{4} \mathcal{C}_{\mu\nu,\rho\lambda}(x-y) \bar{h}^{\mu\nu}(x) \bar{h}^{\rho\lambda}(y) \right]$$
$$= \frac{1}{2} \int \frac{d^4 \vec{Q}}{(2\pi)^4} \left[\mathcal{C}_{\mu\nu}(Q) \bar{A}^{\mu*}(Q) \bar{A}^{\nu}(Q) + \frac{1}{4} \mathcal{C}_{\mu\nu,\rho\lambda}(Q) \bar{h}^{\mu\nu*}(Q) \bar{h}^{\rho\lambda}(Q) \right]$$

• The coefficients $C_{\mu\nu}$, give rise to the R-photon self-energy tensor

$$F(q) \equiv \mathcal{C}_{00}(0,q) = -\frac{N_c^2 T^2}{8} \frac{A_0'(\varepsilon|q)}{A_0(\varepsilon|q)}$$

Policastro, Son & Starinets, JHEP0209(02)043

N_c 3branes AdS_5 X S^5 bulk \leftarrow -UV IR \rightarrow

AdS boundary z=0

The metric at T=0

$$ds^{2} = \frac{1}{z^{2}} \left(-dt^{2} + d\mathbf{x}^{2} + dz^{2} \right) + d\Omega_{5}^{2}$$

The metric at T>0

$$ds^{2} = \frac{1}{z^{2}} \left(-fdt^{2} + d\mathbf{x}^{2} + \frac{dz^{2}}{f} \right) + d\Omega_{5}^{2}$$

$$f = 1 - \frac{z^4}{z_h^4} \qquad z_h = \frac{1}{\pi T}$$