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Medium collectivity in small colliding system: p+A, p+p, etc.

e Long-range multi-particle correlation < medium collective expansion (QGP).

CMS pPb \[s, = 5.02 TeV, N ¢ 35

1<p, <3GeVic

(CMS collaboration)

(a)  CMSpPb\f5,, =5.02TeV, N/ > 110 ®)

1<p, <3GeVic

e Long-range multi-particle correlation < flow v,, and flow cumulants v,{m}.
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e Modeling medium exp. in small colliding systems — hydro.? (good in AA)

initial state + hydro. EoM & EoS + freeze-out
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e But in small systems, applicability of hydro. is challenged,

* convergence of gradient expansion — Amgp/L — Kn (Niemi and Denicol)

* effects of thermal fluctuations are expected stronger.
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e Modeling medium exp. in small colliding systems — hydro.? (good in AA)

initial state + hydro. EoM & EoS + freeze-out

e But in small systems, applicability of hydro. is challenged,

* convergence of gradient expansion — Amgp/L — Kn (Niemi and Denicol)

* effects of thermal fluctuations are expected stronger.

e Goal of this work : A preliminary analysis of the effect of thermal noise

* How significant is the effect of thermal fluctuations in heavy-ion collisions?

* In particular, effect of thermal fluctuations in small colliding systems?
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e Hydrodynamics — conservation of energy-momentum, etc.
™ =ThHY , + 11" “ d,T"" =0 (Euler and equ. of continuity)
especially from hydro EoM, one recognizes that

1 ) as 1 )
dyu(sut') = —TV(Hu,,)H“ - E = —/dsva(uuu)ﬂ“

Navier-Stokes hydro. (1st order):
v 1 o A VB 1 uv A af v
" = —2n §A A" (daug + dgua) — §A Adaug| = —no
where
AP = yPu” + "

* ‘We ignore bulk viscosity ¢ in our work.
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Hydro. and thermal fluctuations in a fluid system

e EoM of a set of physical quantities {z,} in a thermal system

(Landau and Lifshitz. J.Kapusta, B. Muller and M. Stephanov)

:—Z’YabXb+ Yo & S:—ZiaXa

\W—/ ﬂuc
drag

Maximization of S = (ya(t1)ys(t2)) = (Yab + Vba)d(t1 — t2)
e Auto-correlations of thermal noise : fluctuation-dissipation

e For hydro., v4p is determined then by identifying

i — " and X — ATVVWV), (dS /d% V(i) H“")

e Remarks:

1. White noise — delta function §() ~ m

2. Form of 7, corresponds to the detailed form of II#¥, ~,;, ~ dissipations.
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e Hydrodynamics with thermal noise (Navier-Stokes hydro):

( Landau and Lifshitz, J. Kapusta et. al. )

T/,A.l/ — T,ul/ + Hp,z/ + Sy,l/

ideal

where thermal fluctuation tensor S#¥ are introduced w.r.t. TI#¥

(8*(x)) =0
Navier-Stokes: (S (21)S%? (z2)) = 4TnA***F§H) (21 — )
where
1 1
AHVeB — 5 [A“O‘A”ﬁ + A“ﬁA”a] — EA‘“’A"‘ﬁ, and AP dyug = oH¥

* One-point functions of physical quantities are not affected.

* Thermal noise affects two-point correlations.

5/21



Solving hydro. with thermal noise

e Linearized hydro. EoM with thermal fluctuations around d,T§" = 0

therefore d,0T"" =0 ~ O(9),

dwDue + wou'dyua + (Dw + wd - u)dua + VadP + wDduq + d,u (6114 + S5) =0

Dée + 6wd - u + dy(wéu") + wou® Dua — u“d, (6114 + S5) =0
Note that 6].—1;“1 is induced by (5’1—'7 etc. (C. Young, J. Kapusta et al.)

Beyond linear order, thermal noise becomes large, e.g., phase transition.

Simplification can be made when hydro. is analytically solved:
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e Linearized hydro. EoM with thermal fluctuations around d,T§" = 0

therefore d,0T"" =0 ~ O(9),

dwDue + wou'dyua + (Dw + wd - u)dua + VadP + wDduq + d,u (6114 + S5) =0

Dée + 6wd - u + dy(wéu") + wou® Dua — u“d, (6114 + S5) =0
Note that 6].—1;“1 is induced by (5’1—'7 etc. (C. Young, J. Kapusta et al.)

Beyond linear order, thermal noise becomes large, e.g., phase transition.
Simplification can be made when hydro. is analytically solved:

Bjorken flow and Gubser’s flow
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Bjorken hydro. and thermal noise

e Boost invariance X translational invariance in the transverse plane

e Correlation of thermal noise in 141D Bjorken hydro,. (3. kapusta et. al., 2012)

(S"(11,61)8%% (72,&2)) = TnA* AP §(ry — m2)5(61 — &2)

37’1Al

1. 0(&1L — T2, ) — A, characterizes transverse size of the system.
2. Tensor structure of S*¥ is factorized, due to the fact that u* = (1,0).
SHY = w(7T)f(T,§) A",

such that the unknown scalar and dimensionless function f(7,¢)

(f(m1,€1) f(72,&2)) = 2 d(m1 —12)d(61 — &2) with v = gg

T AL w(m)T
3. Magnitude of thermal noise is constrained by (in addition to 1/s):

dE

(A w(r)T) ~ AL (m

dE
) T~ multiplicity
dy

Multiplicity more crucial than system size.
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Hydro. with symmetry simplification — Gubser hydro.

e Gubser hydro., 2+1D (Gubser and Yarom, 2010)

> Bjorken boost — indep. of spatial rapidity &

> Rotational symmetry w.r.t. to beam axis — for p+A and ultra-central A+A

e Change coordinates (7,7, ¢,&) <> (p,0, ¢, &) via the following mapping

1— ¢272 4+ ¢*r2
2qt

2qr

, tanf = —————5—
n 1+q27-2_q2,r2

sinhp = —

p plays the role of ‘time’ in the new (with a ‘hat’) coordinate system.

a" = (1,0,0,0)

e There are two parameters: Ty — multiplicity, ¢ — transverse size.

e Non-trivial description of the radial expansion.
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Gubser hydro. and thermal noise

e Correlation of thermal noise in 241D Gubser hydro., (X — (p, 0, ¢,£))
wT's

ALY a3
cosh? p1sin 61 PHPTO(X = X2)

(8" (p1,01,01,€1)5° (p2, 02, ¢2,&2)) =

1. Tensor structure of $#¥ is factorized, due to a4k = (1,0,0,0).
54 (p,0,,€) = w(p)f (p. 0,6, &P,

and again we have the correlation of scalar function

(F(p1,01,01,61)f(p2,02, 2,&2)) = i

—— (X1 — X;
1Dcosh2p1 sin 61 (X1 2)

2. For scalar function f(X), mode decomposition w.r.t. SO(3) symmetry leads to

scalar modes: f(p,0,6,6) = > h(p)Yim (0, e’ s
and

(h(p1)h(p2)) = 8(p1 — p2)

w cosh? py
3. Magnitude of thermal noise is constrained by
W~ To ~ multiplicity

Multiplicity more crucial than system size.
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Solve Gubser hydro. with thermal noise

e Decompose thermal fluctuations into modes — scalar and vector modes:
0T =T 61(p) Yim (0, p)e™<*
it = 3 [01s(0)0:Y i (0, )™ + 011 (p) B 1m) (6, @)
Site = Y vig () Yim (6, $)e™
e EoM of each mode,
Vi(p) = —T(p, 1, ke)Vi(p) + K(p, ke),

where prime denotes derivative w.r.t. p

8i(p) — 3 tanh ph(p)
y vis (p) F - T tanh ph(p)
Vi(p) = ° , I'is a 4 x 4 matrix, K= 3T i

vig (p) )

viw(p)

1. Coupled EoMs in 3+1D.
2. Vector modes are decoupled, and NOT affected by thermal noise.
3. Note that thermal fluctuations are indep. of m.
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Apply noisy Gubser hydro. to ultra-central Pb-Pb, p-Pb and p-p

o Ty and q determine the system.

PbPb | pPb | pp

Ty 7.3 31 | 1.7
g (fm)~t | 4.3 1.1 | 1.1

Note that the strength of thermal fluctuations is fixed once Ty is given.

e Approximates system evolution of first several fm’s

o ke =0 mode
- Long rapidity range correlations, affected also by initial fluctuations.

- Further simplification with v¢ modes decoupled — 2 coupled equations.

(6T, 64;) < (8T, Sur, Gur, Sugy)

e We will NOT discuss hadronization and freeze-out.
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Apply noisy Gubser hydro. to ultra-central Pb-Pb, p-Pb and p-p

Ty and q determine the system.

PbPb | pPb | pp

To 7.3 3.1 | 1.7
-1 -1

q (fm) 4.3 1.1 | 1.1

Note that the strength of thermal fluctuations is fixed once Ty is given.

Approximates system evolution of first several fm’s

ke = 0 mode

- Long rapidity range correlations, affected also by initial fluctuations.

- Further simplification with v¢ modes decoupled — 2 coupled equations.

(6T, 64;) < (8T, Sur, Gur, Sugy)

We will NOT discuss hadronization and freeze-out.

Initial condition 7
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e T'(r,Z1) with thermal noise, one random event
Pb-Pb
T(GeV):t=1.7fm
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e T(1,Z,) with thermal noise, one random event

p-Pb
T(GeV): 1= 1.7 fm
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e T(1,Z,) with thermal noise, one random event

T(GeV):t=1.7 fm

p-p
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Two-point correlations — quantitative effects of thermal fluc.

e Two-point correlation of radial flow velocity

Cupur (T, AD, 7, 0) = (ur (7,7, @)ur (7,7, 0 + AP)) — (ursp (T, r)>2
= Cirur Jr CZ;'U'T
N~ S~~~
initial state fluc. thermal fluc.

Can also be defined w.r.t. fluctuation modes 67"

e Initial condition : specify 67'(po)
» Long-range correlation: initial state eccentricity of order m &, (single mode)

5T(97¢7907£) _ L _ Tni L
W* Aini |( 1) \/gym,m((gv(ﬁ)—"_\/iy'm**m(e’(ﬁ) ?

» Short-range correlation: §7'(po) as a Dirac delta function (all modes)

6T(p070’¢7£) _ — ; B -
W B m * cosh pg Sin€6(6 00)3(¢ — ¢o) -
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Two-point correlations — quantitative effects of thermal fluc.

e Two-point correlation of radial flow velocity

Curur (7-7 A¢7 T, ¢) = <U’T (7—7 T, ¢)u7“(7-7 T, ¢ + A¢)> - <u'fb(7-7 T)>2

= Cirur + Cglnur
N~ S~~~
initial state fluc. thermal fluc.
Can also be defined w.r.t. fluctuation modes 67"

e Initial condition : specify 67'(po)

» Long-range correlation: initial state eccentricity of order m &, (single mode)

6T(67 ?, PO, 5)

1 1
= - - Aim (_l)miym,m(‘gy(ﬁ)+7Ym,f’m(97¢) )

T'(po) V2 V2

» Short-range correlation: §7'(po) as a Dirac delta function (all modes)

6T(p070’¢7£) _ — ; B -
W = V/Aini X cosh pg sin€5(6 00)3(¢ — ¢o) -

Aini unknown, to be fixed by phenomenology.
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e Initial eccentricity is responsible for harmonic flow vy,

[ &Pz rme™e(x, y)
fdeere(:my)

Em =

e E.g., background with initial €3 : Y33 and Y3 _3

e(z,y) dur Sy due
0 ™ £ By
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e Fix Ain; so that at 7 = 0.6 fm: (m = 2,3,4,5)

£m(Pb-Pb) ~ 0.05, £, (p-Pb) ~ 0.15, & (p-p) ~ 0.2.
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For long-range correlation

° C’f,,u,,,/C’iru,,, with an initial &, vs. A¢ at 7 = 2.5 fm

0 n/4 2n/4 3n/4 T 0 /6 /3 n/2 2n/3
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For long-range correlation

° C’f,,u,,,/C’iru,,, with an initial &, vs. A¢ at 7 = 2.5 fm

n/2
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For short-range correlation

° C’Lur /CL . (A¢ = m) with initial Dirac delta vs. (r, A¢) at 7 = 2.5 fm

rUr
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For short-range correlation

° C’Lur /CL . (A¢ = m) with initial Dirac delta vs. (r, A¢) at 7 = 2.5 fm

rUr

1.75 (e) p-Pb
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For short-range correlation

° C;{,.u,,./ci,.u,.(A¢ = 7r) with initial Dirac delta vs. A¢ at 7 = 2.5 fm

-5 -1 05 0 05 1 15
A¢(radians)
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For short-range correlation

° C;{,.u,,./ci,.u,.(Aﬁb = 7r) with initial Dirac delta vs. A¢ at 7 = 2.5 fm

0 esscaEsec
15 -1

-05 0

05 1
A¢(radians)

Related to the near-side peak structure in two-particle correlations

1.5
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Formulate and solve 241D Gubser hydro. with thermal fluctuations for HIC,

e Strength of hydrodynamical fluctuations is mostly controlled by multiplicity.

e Long-range correlations (evolution of anisotropy in medium):

- No significant contributions from thermal fluc.
- Clear trend of increasing effect of hydro. fluc. from Pb-Pb to p-p.

- Clear trend of increasing effect of hydro. fluc. w.r.t. harmonic order.

ct(A¢p,m) <  suppressed stronger by n/s for larger harmonic order
(cf. Gubser and Yarom, Shuryak and Staig)

CT(Ap,m) <« irrespective of harmonic order

e Short-range correlations (near-side): height and width incearse from Pb-Pb to p-p
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