

Pentaquark at LHCb

Zhenwei Yang (杨振伟) on behalf of the LHCb collaboration

> Center for High Energy Physics, Tsinghua University

> > 8 June, 2016

QCD Phase Structure III Central China Normal University, Wuhan, China 6-9 June, 2016

Outline

- > Introduction
- \triangleright Pentaquarks observed in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays
 - Full amplitude analysis

PRL 115 (2015) 072001

Model independent analysis

arXiv:1604.05708

- Studies in Cabibbo-suppressed $\Lambda_b^0 \to J/\psi p\pi^-$ decays

 LHCb-PAPER-2016-015
 (in preparation)
- > Summary and outlook

Why pentaquarks?

- Possible existence of pentaquarks was proposed by Gell-Mann and Zweig at the birth of quark model
- Study of the nature of pentaquarks could fertilize our understanding of QCD
- Many searches in the past 50 years, but no convincing experimental evidence

LHCb collaboration

LHCb detector

Collision point

Beam

Int. J. Mod. Phys. A 30 (2015) 1530022

Impact parameter:

Proper time:

Momentum:

Mass:

RICH $K - \pi$ separation:

Muon ID:

ECAL:

$$\sigma_{IP} = 20 \; \mu \text{m}$$

$$\sigma_{\tau} = 45 \text{ fs for } B_{S}^{0} \rightarrow J/\psi \phi \text{ or } D_{S}^{+}\pi^{-}$$

$$\Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{ GeV}/c)$$

$$\sigma_m = 8 \text{ MeV}/c^2 \text{ for } B \to J/\psi X \text{ (constrainted m}_{J/\psi}\text{)}$$

$$\epsilon(K \to K) \sim 95\%$$
 mis-ID $\epsilon(\pi \to K) \sim 5\%$

$$\epsilon(\mu \to \mu) \sim 97\%$$
 mis-ID $\epsilon(\pi \to \mu) \sim 1 - 3\%$

$$\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$$

Event display of $\Lambda_b^0 \to J/\psi p K^-$ decay

Two RICH detectors allow for good identification of proton and kaon

Primary vertex and decay vertex well reconstructed and separated in the Vertex Locator

$\Lambda_b^0 o J/\psi p K^-$ and event selection

- First observed by LHCb as a potential background for $B_s^0 o J/\psi K^+K^-$
 - Large signal yield found, used for Λ_b^0 lifetime measurement (PRL 111, 102003)

Event selection:

- Standard preselection
- Followed by selection with Gradient Boosted Decision Tree (BDTG)
- $\gt B^0_S o J/\psi K^+K^-$ and $B^0 o J/\psi K^+\pi^-$ reflections vetoed, where K^- and π^- are misidentified as \overline{p}

PRL 115 (2015) 072001

5.4% background in $\pm 2\sigma$

Expected rich structures in m(Kp)

PRL 115 (2015) 072001

 \triangleright Many Λ^* resonances as expected

Unexpected structures in $m(J/\psi p)$

- ightharpoonup Reflection from $\Lambda_b^0 \to J/\psi \Lambda^*$?
- \triangleright Or structure of $J/\psi p$?
- > Careful checks needed

"Dalitz plot"

- ightharpoonup Clear horizontal band at $m_{I/\psi p}^2 pprox 20~{
 m GeV}^2$
- ho Λ^* structures dominate low m_{Kp}^2 region, interferences unlikely generate the horizontal band at high m_{Kp}^2 region

Is the peak due to "artifacts"?

- Many checks done
 - Reflections of $B_s^0 \to J/\psi K^+ K^$ and $B^0 \to J/\psi K^+ \pi^-$ are vetoed
 - Efficiency doesn't make narrow peak
 - Clones & ghost tracks eliminated
 - Ξ_b decays checked as a source

To confirm that the peak is NOT a reflection of interfering Λ^* 's $\to pK^-$, a full amplitude analysis is performed using all known Λ^* resonances.

- to maximize sensitivity to the decay dynamics
- to avoid biases due to averaging over some dimensions in presence of the non-uniform detector efficiency

Amplitude analysis of $\Lambda_b^0 o J/\psi p K^-$

ightharpoonup Allows for $\Lambda^* o pK^-$ resonances to interfere with pentaquark states $P_c^+ o J/\psi\, p$

$$\Lambda_b^0 \to J/\psi \Lambda^* \longrightarrow pK^-$$

 Λ_b rest frame

$$\Lambda_b^0 \to P_c^+ K^- \\ \hookrightarrow J/\psi p$$

➤ Independent variables: 1 mass (m_{pK^-}) and 5 angles → 6D fit

Λ^* resonances

- \triangleright Each Λ^* resonance: $J = \frac{1}{2} (> \frac{1}{2})$ has 4 (6) complex helicity couplings
- Masses and widths fixed to PDG values
 - Uncertainties are considered as systematics
- > Two models: "reduced" and "extended" to test dependence of the Λ^* model

				Eth HECU D	All States, L
State	J^p	$M_0 \; ({ m MeV})$	$\Gamma_0 \; ({ m MeV})$	# Reduced	# Extended
$\Lambda(1405)$	1/2-	$1405.1^{+1.3}_{-1.0}$	50.5 ± 2.0	3	4
$\Lambda(1520)$	3/2-	1519.5 ± 1.0	15.6 ± 1.0	5	6
A(1600)	$1/2^{+}$	1600	150	3	4
A(1670)	$1/2^{-}$	1670	35	3	4
$\Lambda(1690)$	$3/2^{-}$	1690	60	5	6
$\Lambda(1800)$	1/2-	1800	300	4	4
$\Lambda(1810)$	$1/2^{+}$	1810	150	3	4
$\Lambda(1820)$	$5/2^{+}$	1820	80	1	6
$\Lambda(1830)$	$5/2^{-}$	1830	95	1	6
$\Lambda(1890)$	$3/2^{+}$	1890	100	3	6
$\Lambda(2100)$	$7/2^{-}$	2100	200	1	6
$\Lambda(2110)$	$5/2^{+}$	2110	200	1	6
$\Lambda(2350)$	$9/2^{+}$	2350	150	0	6
$\Lambda(2585)$?	≈ 2585	200	0	6

Fit without P_c^+

- $\blacktriangleright m(pK^-)$ looks fine, but not $m(J/\psi p)$
- Other possibilities:
 - All Σ^{*0} (I=1)
 - two new Λ^* with free $m\&\Gamma$
 - 4 non-resonant Λ^* with $J^P = \frac{1}{2}^{\pm}$ and $\frac{3}{2}^{\pm}$
- > Still fail to describe the data

Fit results with P_c states

- > Two P_c states: $P_c(4450)^+$ and $P_c(4380)^+$
 - \triangleright Best fit has $J^P = (3/2^-, 5/2^+)$
 - $J^P = (3/2^+, 5/2^-) \& (5/2^+, 3/2^-)$ also preferred

Fit results with P_c states

Resonance	Mass (MeV)	Width (MeV)	Significance	Fit fraction(%)
$P_c(4380)^+$	4380±8±29	205±18±86	9 σ	$8.4 \pm 0.7 \pm 4.2$
$P_c(4450)^+$	$4449.8 \pm 1.7 \pm 2.5$	$39 \pm 5 \pm 19$	12σ	$4.1 \pm 0.5 \pm 1.1$
Λ (1405)				15±1±6
Λ (1520)				19±1±4

Using
$$\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)$$
, the branching fractions are: For $P_c(4380)^+$, $\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = \left(2.66 \pm 0.22 \pm 1.33^{+0.48}_{-0.38}\right) \times 10^{-5}$ For $P_c(4450)^+$, $\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) = \left(1.30 \pm 0.16 \pm 0.35^{+0.23}_{-0.18}\right) \times 10^{-5}$

Angular distributions

P_c^+ enriched region

Good fits to the data in all 6 dimensions

No need for exotic $J/\psi K^-$ contributions

 $> J/\psi K$ system is well described by the Λ^* and P_c reflections

Additional cross-checks

Many additional cross-checks were done, such as

- Two independently coded fitters using different background subtractions (sFit & cFit)
- Split data show consistency:
 - 2011/2012
 - Magnetic polarities (Up/Down)
 - $\Lambda_b^0/\overline{\Lambda}_b^0$
 - $\Lambda_b^0(\log p_{\rm T})/\Lambda_b^0(\operatorname{high} p_{\rm T})$
- ➤ Varied selection
- $\triangleright B^0$ and B_S^0 reflections modelled in the fit instead of veto

Argand diagrams

- \succ Exotic hadron amplitudes for 6 $m_{J/\psi p}$ bins near the peak mass, while all other model parameters fitted simultaneously
- $P_c(4450) +$
 - Good evidence for the resonant character
- $P_c(4380)^+$
 - Uncertainties too large to be conclusive

Breit-Wigner expectation Fitted values

Model independent analysis

arXiv:1604.05708

Model independent proof is especially important for the $\Lambda_b^0 \to J/\psi p K^-$ data, due to the difficulties in construction of a complete of Λ^* states

 H_0 : hypothesis of no pentaquark states

Studies in $\Lambda_b^0 o J/\psi p \pi^-$ decays

- More than a factor of 10 lower signal statistics in $\Lambda_b^0 \to J/\psi p \pi^-$ than in $\Lambda_b^0 \to J/\psi p K^-$ (Cabibbo-favored)
- Relatively background fraction higher by more than a factor of 3

PRL 115 (2015) 072001

LHCb-PAPER-2016-015 (in preparation)

Exotic hadron contributions to $\Lambda_b^0 o J/\psi p \pi^-$

- Test $P_c(4380)^+$ and $P_c(4450)^+$ ($\to J/\psi p$) observed by LHCb in $\Lambda_b^0 \to J/\psi p K^-$
- \nearrow Test $Z_c(4200)^+ \to J/\psi \pi^+$ observed by Belle in $B^0 \to J/\psi \pi^+ K^-$

Amplitude fits to $\Lambda_b^0 o J/\psi p \pi^-$

- Significance of $P_c(4380)^+$, $P_c(4450)^+$, $Z_c(4200)^-$ taken together is $3.1~\sigma$
- Evidence for exotic hadron contributions to $\Lambda_b^0 \to J/\psi p \pi^-$

LHCb-PAPER-2016-015 (in preparation)

Fit results for $\Lambda_b^0 o J/\psi p \pi^-$

- Significance of $P_c(4380)^+$, $P_c(4450)^+$, $Z_c(4200)^-$ taken together is 3.1σ (including systematic uncertainty) \rightarrow evidence for exotics
- Individual exotic hadron contributions are not significant
- > If assume $Z_c(4200)^-$ contribution negligible, significance of P_c^+ states increases to 3.3 σ

State	Fit fraction (%)	$\mathcal{B}ig(\Lambda_b^0 o P_c^+\pi^-ig)/\mathcal{B}ig(\Lambda_b^0 o P_c^+K^-ig)$
$Z_c(4200)^-$	$7.7 \pm 2.8^{+3.4}_{-4.0}$	_
$P_c(4380)^+$	$5.1 \pm 1.5^{+2.1}_{-1.6}$	$0.050 \pm 0.016^{+0.020}_{-0.016} \pm 0.025$
$P_c(4450)^+$	$1.6^{+0.8}_{-0.6}^{+0.8}_{-0.5}^{+0.6}$	$0.033^{+0.016}_{-0.014}{}^{+0.011}_{-0.009} \pm 0.025$

Expected if the additional internal W emission diagram negligible: $0.07 \sim 0.08$ [H.-Y Cheng and C.-K Chua, PRD92 (2015) 096009]

The results are consistent with those obtained from the $\Lambda_h^0 o J/\psi p K^-$ decay

Summary and outlook

- Two resonance states, $P_c(4380)^+$ and $P_c(4450)^+$, decaying to $J/\psi p$ have been observed by LHCb in a full amplitude analysis of $\Lambda_b^0 \to J/\psi \, pK^-$ decays
- Model independent analysis confirmed the necessity of exotic hadron contributions
- ightharpoonup Amplitude in the Cabibbo suppressed $\Lambda_b^0 o J/\psi p\pi^-$ decay shows evidence of exotic hadron contributions, consistent with the results in $\Lambda_b^0 o J/\psi \, pK^-$ decays
- \blacktriangleright Nature of the P_c^+ states not clear: loosely-bound, tightly-bound, hybrid?
- ➤ We look forward to establishing the structure of many other states or other decay modes using RUN 2 data

一万年太久,只争朝夕!

谢谢!