pillows, pillo

Phase Diagram of QCD

Kenji Fukushima

The University of Tokyo

— QCD Phase Structure III in CCNU Wuhan —

1

A bit about the History

as an introduction to diquarks

June 9 @ QCDPSIII (Wuhan)

Forgotten Candidate

Forgotten Candidate

NEOR STRAR STRA

June 9 @ QCDPSIII (Wuhan)

Prototype of Phase Diagram

だんしゃくい だんしゃくい だんしゃくい だんしゃくい だんしゃ だんしゃくい だんしゃくい だんしゃくい だんしゃくい だんしゃくい たんしゃ

June 9 @ QCDPSIII (Wuhan)

Chiral Phase Diagram

ĸĔĔŗĸĿĿĸĔĔŗĸĿĿĸĔĔŗĸĿĸĔĔŗĸĿĸĔĔŗĸĿĿĸĔĔŗĸĔĿĸĔĔŗĸĿĸĔĔŗĸĿĸĔĔŗĸĿĸĔĔŗĸĿĸĔĔŗĸĿĿŔĔŗĸ

June 9 @ QCDPSIII (Wuhan)

QCD Critical Point

June 9 @ QCDPSIII (Wuhan)

Color Superconductivity

ĦĨŢŖŴĸĔĬĬŢŖŴĸĔĬĬŢŖŴĸĔĬĬĬŢŔĬŢŖŴĸĔĬĬĬŢŖĔĬĬĬŢŖŴĸĔĬĬĬŢŖŴĸĔĬĬĬŢŖŴĸĔĬĬĬŢŖŴĸĔĬĬĬŢŖŴĸĔĬĬĬŢŖ

June 9 @ QCDPSIII (Wuhan)

Chromomagnetic Instabilities

ĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĿĦĨŎĸĔĿĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĸĦĨŎĸĿĿĦĬĬŎ

Some of Highlights

ĦĨŢŎĸĿĸĦĨŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬŢŎŔĿŔĬĬŢŎĿŔĬŢŎŔĿŔĬĬŢŎĿŔĬŢŎĸĿŔĬŢŎĸĿŔĬŢŎĸĿŔĬŢŎ

"Charge Neutrality Effects on 2-flavor Color Superconductivity" Mei Huang, Pengfei Zhuang, Weiqin Chao: hep-ph/0207008

- "Breached Pairing Superfluidity at Finite Temperature and Density" Jinfeng Liao, Pengfei Zhuang: cond-mat/0307516
- "Pion Condensation in Baryonic Matter: from Sarma Phase to Larkin-Ovchnnikov-Fudde (Fulde)-Ferrell Phase" Lianyi He, Meng Jin, **Pengfei Zhuang**: hep-ph/0604224
- "Neutral Color Superconductivity Including Inhomogeneous Phases at Finite Temperature" Lianyi He, Meng Jin, **Pengfei Zhuang**: hep-ph/0610121

My First? Contact

\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$\$042.\$\$

New Frontiers in QCD 2008

Fundamental Problems in Hot and/or Dense Matter

Peschanski	Robert	Saclay																										
Redlich	Krzysztof	Wroclaw U.																										
Rho	Mannque	Saclay																										
Rischke	Dirk	Frankfurt																										
Romatschke	Paul	Univ. of Washington																										
Shovkovy	lgor	Western Illinois U.																										
Sin	Sang-Jin	Hanyang U.																										
Venugopalan	Raju	BNL																										
Wambach	Jochen	Darmstadt																										
Last Name	First Name	Affiliation	January				February																					
			28	29	30	31	1	2	3	4	56	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Weise	Wolfram	Munich Tech. U.																										
Zhuang	Peng-Fei	Tsinghua U.																										

Many QCD Critical Points?

ġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġġġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸĿġŔġĸ

Zhang-Fukushima-Kunihiro (2008)

Polyakov Loop

June 9 @ QCDPSIII (Wuhan)

Revival of Interest

BNL-Kyoto-... Diagram

pillow, pillow, pillow, pillow, pillow, pillo pillow, pillow, pillow, pillow, pillow, pillow, pillo

June 9 @ QCDPSIII (Wuhan)

Inhomogeneity

June 9 @ QCDPSIII (Wuhan)

Quarkyonic Chiral Spirals Kojo-Hidaka-Fukushima-McLerran-Pisarsky (2010)

Summary

HEAR. HEAR. HEAR. HEAR. HEAR. HEAR. HEAR HEAR. HEAR. HEAR. HEAR. HEAR. HEAR. HEAR. HEAR. HEAR. HEAR.

June 9 @ QCDPSIII (Wuhan)

Interesting Topics Ongoi	ng
SEPARTER STORES SEPARTER STORES SEPARTER SEPARTER SEPARTER SEPARTER	na. silana. sila
Finite isospin / chiral / chemical potential	S
□ First-order phase transition? Confirmable w	ith lattice
Pion superfluid / LOFF (Ask Pengfei for de	tails)
Finite B (not E) with/without T and densi	ty
Inverse) Magnetic catalysis	
CP in anisotropic pure Yang-Mills theory	
Finite rotation (angular momentum)	Xu-guang Jinfeng
\Box Similar to <i>B</i> / similar to finite density	51110115
Topological currents	
Finite curvature (curved space-time)	
Chiral symmetric mass gap / Early Universe	

Magnetic Shift of Chemical Freezeout

KF-Hidaka (2016)

More about the Diquark

Never ending project with Jan...

Biggest Question Mark???

HERAL HERAL HERAL HERAL HERAL HERAL HER HERAL HERAL HERAL HERAL HERAL HERAL HERAL HERAL

Diquarks

Bare vs Constituent

Meson $\sim q\bar{q} + q\bar{q}q\bar{q} + q\bar{q}q\bar{q}q\bar{q}q\bar{q} + \cdots$ (Vacuum Re-organized) $\sim q_{\rm con}\bar{q}_{\rm con} +$ (Bag Constant)

How can we be so sure about $M \sim q\bar{q}$ $B \sim qqq$

beyond quantum num of Quark Model?

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964

6) James Joyce, Finnegan's Wake (Viking Press, New York, 1939) p.383.

Primeval expression of diquarks

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u_3^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration $(q \bar{q})$ similarly gives just 1 and 8.

Who was the First?

ನೆ. ಸಹಿಂಪ್, ಸಹಿಂಪ್, ಸಹಿಂಪ್, ಸಹಿಂ ಸಹಿಂಪ್, ಸಹಿಂಪ, ಸಹಿಂಪ, ಸಹಿಂಪ, ಸಹಿಂಪ, ಸಹಿಂಪ, ಸಹಿಂ

Perhaps these missing states really do not exist. If baryons were diquark–quark systems, Fig. 2, as Lichtenberg and Tassie noted more than 40 years ago [4], the number of states would be restricted and in fact be very like that currently observed.

Prog. Theor. Phys. Vol. 36 (1966), No. 4

Baryon Resonances in a Quark Model

Masakuni Ida and Reido Kobayashi

We suppose that baryons consist of a qq pair (or a diquark) and another quark moving around it with orbital angular momentum L. In order that for L=0 our model can produce the $1/2^+$ octet and the $3/2^+$ decuplet, which belong to the "56" of SU(6), the qq pair must be in a ${}^{3}S_{1}$ state and form an SU(3) sextet. Unwanted June 9 @ OCDPSIII (Wuhan)

Pennington (2011)

If you know, let me know!

Exotica (scalar nonet)

Volume 60B, number 2

PHYSICS LETTERS

5 January 1976

UNCONVENTIONAL STATES OF CONFINED QUARKS AND GLUONS $\stackrel{\circ}{\sim}$

R.L. JAFFE* and K. JOHNSON

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA

mentally observed "resonances". In particular we are led to classify the 0⁺⁺ enhancements known as the ϵ , S^{*} and δ as QQQQ states. If correct, this assignment disrupts further the already uneasy state of the Pwave mesons in the quark model.

broad exotic $QQ\bar{Q}\bar{Q}$ states and the P-wave baryons states overlap broad $4Q\bar{Q}$ states. In such cases one might expect that mixing effects will play an essential role in an unravelling of partial widths. This may provide a clue to an understanding of some of the elusive P-wave states such as the A_1 .

Can explain why $a_0(980)$ heaviest without strangeness Exotic component is to be mixed (via instanton int.)

Classification

ĦĨŢŎĿĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĔĬŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎĿĿĦĨŢŎ

$3 \otimes 3 = \overline{3} \otimes 6$

Quantum numbers and operators

J^{p}	Color	Flavor	Operator
0+ 1+	$\frac{\overline{3}}{\overline{3}}$	3 6	$ \overline{\Psi}_{C} \gamma_{5} \Psi, \overline{\Psi}_{C} \gamma_{0} \gamma_{5} \Psi \overline{\Psi}_{C} \gamma_{i} \Psi, \overline{\Psi}_{C} \sigma_{0i} \Psi $
0- 1-	$\frac{\overline{3}}{\overline{3}}$	6 3	$ \overline{\psi}_{C}\psi, \overline{\psi}_{C}\gamma_{0}\psi \\ \overline{\psi}_{C}\gamma_{i}\gamma_{5}\psi, \overline{\psi}_{C}\sigma_{ij}\psi $

Diquark Phenomenology

$$\Delta I = 1/2$$
 rule in non-leptonic weak decay
 $\Delta I = 1/2 \gg \Delta I = 3/2$
 $\times \sim 20$

Stech, Neubert, Xu, Dosch (1987~)

Fierz transformed interaction:

$$V_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \Big[c_{-} (ud)_{\bar{3}}^{\dagger} (su)_{\bar{3}} + c_{+} (ud)_{6}^{\dagger} (su)_{6} + \cdots \Big] \\ \Delta I = 1/2 \qquad \Delta I = 1/2, 3/2$$

Enhanced by diquarks

Diquark on Quenched Lattice

Lattice in Landau gauge (Hess-Karsch-Laermann-Wetzorke 1998)

$$m_{\text{good}} = 694(22) \text{ MeV}$$

 $(m_{\pi} \simeq 350 \text{ MeV})$

Mass splitting from S=1 and S=0

$$m_{\rm bad} - m_{\rm good} \approx \frac{1}{2} (m_{\Delta} - m_N)$$

Diquark on Lattice

Density-density correlator (Alexandrou-de Forcrand-Lucini 2005)

ನ್ ಬೇಕೆದ್ದನ್ ಬೇಕೆದ್ದಾನ ಬೇಕೆದ ಬೇಕೆದ್ದಾನ. ಬೇಕೆದ್ದಾನ

Idealized : static-light-light baryon system

$$C(\mathbf{r}_{u},\mathbf{r}_{d}) = \langle N | \rho^{u}(\mathbf{r}_{u}) \rho^{d}(\mathbf{r}_{d}) | N \rangle$$

Correlation $0^+ > 1^+ \gg 0^-$ Characteristic diquark size $\sim 1.1 \pm 0.2$ fm Leinweber (1993) Larger than meson size increases by $\epsilon/\sqrt{3}$, $\epsilon/2$ $\delta L = (2/\sqrt{3} - 1/2\sqrt{3})\epsilon$ $= \sqrt{3}\epsilon/2$

Diquark and Deconfinement

Deconfinement in pQCD

SÉRAR, SÉRA

pQCD justifies itself at high T All gluons are screened by gT or g^2T

pQCD does not justify itself at high μ Magnetic gluons never screened

Superdense Matter: Neutrons or Asymptotically Free Quarks?

J. C. Collins and M. J. Perry Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, England (Received 6 January 1975)

Insufficient justification

Color super justifies pQCD at high μ All gluons are screened by $g\mu$

Deconfinement Revisited

ĦĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĔĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖĸĿĸĔĔŖ

CFL (3-flavor CSC) reads:

SU(3)_C broken completely All 8 gluons get massive (Meissner effect)

No confinement remains

Can this be a "definition" of deconfinement ?

Private communications with Gordon Baym

If so, quark matter is realized only through diquarks

Diquark Continuity ೆ. ನಟ್ಟಿಂಪ್, ನಟ್ಟಿಂಪ್, ನಟ್ಟಿಂ ನಟ್ಟಿಂಪ್, ನಟ **EoS of Quark Matter** P **EoS of Nuclear Matter** μ

June 9 @ QCDPSIII (Wuhan)

Diquark Continuity 5120 P. 5120 5120 P. 51 **EoS of Quark Matter** P (Quarkyonic) **EoS of Nuclear Matter Diquarks** μ

Cannot be right!?

June 9 @ QCDPSIII (Wuhan)

APR-constrained NJL

ĦĨŢŎĸĿĿĦĨŢŎĸĿĦĨĬŢŎĸĿĦĨŢŎĸĿĦĨŢŎĸĿĦĨŢŎŔĬŢŎĸĿĦĨŢŎĸĿĦĬŢŎĸĿĦĬŢŎĸĿĦĬŢŎĸĿĦĬŢŎĸĿĦĬŢŎĸĿĔĬŢŎ

All non-perturbative effects renormalized in G_V

APR can be reproduced with "running" vector interaction

Best fit function ~ inverse log

cf.
$$\alpha_{\rm s}(\mu) = \frac{1}{b \log(\mu/\Lambda)}$$

Suggestive!!!

Nuclear matter knows the running coupling?

June 9 @ QCDPSIII (Wuhan)

APR-constrained NJL

Fukushima-Kojo (2015)

Weak 1st-order Phase Transition (2SC-CFL)

Single unified theory covering all the densities!

June 9 @ QCDPSIII (Wuhan)

M-R Relation

Fukushima-Kojo (2015)

June 9 @ QCDPSIII (Wuhan)

Summary and Speculation

Summary

ĦĨŢŎĸĿĸĦĨŢŎĸĿĸĦĨŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎĸĿŔĬĬŢŎ

Nuclear Matter = 2SC + Chiral Cond. + 6-diquark

- □ More reasonable than CFL-NM continuity
- □ Chance to access the diquark superfluid phase in HIC?
- □ Enhanced fluctuations from (critical) diquarks
- \Box Refined HRG with diquarks?

New Model = APR-constrained NJL

□ Microscopic information superseding parametrization □ Less crazier than using APR to ~5 n_0 ! (Ask Toru!)

Spectroscopy of Qqq baryons?

