Phase Diagram of QCD

Kenji Fukushima

The University of Tokyo
— QCD Phase Structure III in CCNU Wuhan -

A bit about the History

as an introduction to diquarks

Birth of the QCD Phase Diagram

Forgotten Candidate

Forgotten Candidate

Prototype of Phase Diagram

PHASE DIAGRAM OF NUCLEAR MATTER.
Baym (1983)

June 9 @ QCDPSIII (Wuhan)

Chiral Phase Diagram

June 9 @ QCDPSIII (Wuhan)

QCD Critical Point

June 9 @ QCDPSIII (Wuhan)

Color Superconductivity

June 9 @ QCDPSIII (Wuhan)

Chromomagnetic Instabilities

Some of Highlights

"Charge Neutrality Effects on 2-flavor Color Superconductivity" Mei Huang, Pengfei Zhuang, Weiqin Chao: hep-ph/0207008
"Breached Pairing Superfluidity at Finite Temperature and Density" Jinfeng Liao, Pengfei Zhuang: cond-mat/0307516
"Pion Condensation in Baryonic Matter: from Sarma Phase to Larkin-Ovchnnikov-Fudde (Fulde)-Ferrell Phase" Lianyi He, Meng Jin, Pengfei Zhuang: hep-ph/0604224
"Neutral Color Superconductivity Including Inhomogeneous
Phases at Finite Temperature"
Lianyi He, Meng Jin, Pengfei Zhuang: hep-ph/0610121

My First? Contact

New Frontiers in QCD 2008

Fundamental Problems in Hot and/or Dense Matter

Many QCD Critical Points?

 Zhang-Fukushima-Kunihiro (2008)

June 9 @ QCDPSIII (Wuhan)

Polyakov Loop

Fukushima (2003) (2008)

Revival of Interest

June 9 @ QCDPSIII (Wuhan)

BNL-Kyoto-... Diagram

Inhomogeneity

Quarkyonic Chiral Spirals

 Kojo-Hidaka-Fukushima-McLerran-Pisarsky (2010)

Summary

Alternative Summary

Temperature T

Fukushima-Sasaki (2013)
Quark-Gluon Plasma

Hadronic Phase

Nuclear Superfluid

Chemical Potential μ_{B}

Interesting Topics Ongoing

Finite isospin / chiral / chemical potentials
\square First-order phase transition? Confirmable with lattice
\square Pion superfluid / LOFF (Ask Pengfei for details)
\square Finite $B(\operatorname{not} E)$ with/without T and density
\square (Inverse) Magnetic catalysis
\square CP in anisotropic pure Yang-Mills theory
Finite rotation (angular momentum)
Xu-guang
Jinfeng...
\square Similar to $B /$ similar to finite density
\square Topological currents
Finite curvature (curved space-time)
\square Chiral symmetric mass gap / Early Universe

Magnetic Shift of Chemical Freezeout

Slanting lines

With conservation of S and Q

Shaded lines

Without conserv.
of S and Q

KF-Hidaka (2016)

More about the Diquark

Never ending project with Jan...

Biggest Question Mark???

Nuclear Matter

Quark Matter

Diquarks

Bare vs Constituent

Meson $\sim q \bar{q}+q \bar{q} q \bar{q}+q \bar{q} q \bar{q} q \bar{q}+\cdots$ (Vacuum Re-organized) $\sim q_{\text {con }} \bar{q}_{\text {con }}+($ Bag Constant $)$

How can we be so sure about $M \sim q \bar{q}$

$$
B \sim q q q
$$

beyond quantum num of Quark Model?

A SCHEMATIC MODEL OF BARYONS AND MESONS *
M. GELL-MANN

California Institute of Technology, Pasadena, California
Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the
6) James Joyce, Finnegan's Wake (Viking Press, New York, 1939) p. 383. charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: $\operatorname{spin} \frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer te the members $\mathrm{u}^{\frac{2}{3}}, \mathrm{~d}^{-\frac{1}{3}}$, and $\mathrm{s}^{-\frac{1^{3}}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q}. Baryons can now be
Primeval expression of diquarks constructed from quarks by using the combinations ($q q q$), ($q q q q \bar{q}$), etc., while mesons are made out of $(q \bar{q})$, ($q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q qq) gives just the representations 1, 8, and 10 that have been observed, while the lowest meson configuration ($q \bar{q}$) similarly gives just 1 and 8.
June 9 @ QCDPSIII (Wuhan) 26

Who was the First?

Perhaps these missing states really do not exist. If baryons were diquark-quark systems, Fig. 2, as Lichtenberg and Tassie noted more than 40 years ago [4], the number of states would be restricted and in fact be very like that currently observed.

Pennington (2011)
Prog. Theor. Phys. Vol. 36 (1966), No. 4

Baryon Resonances in a Quark Model

Masakuni Ida and Reido Kobayashi
We suppose that baryons consist of a $q q$ pair (or a diquark) and another quark moving around it with orbital angular momentum L. In order that for $L=0$ our model can produce the $1 / 2^{+}$octet and the
 $3 / 2^{+}$decuplet, which belong to the " 56 " of $S U(6)$, the $q q$ pair must be in a ${ }^{3} S_{1}$ state and form an $S U(3)$ sextet. Unwanted

Exotica (scalar nonet)

UNCONVENTIONAL STATES OF CONFINED QUARKS AND GLUONS ${ }^{\text {TH }}$

R.L. JAFFE* and K. JOHNSON
Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA

mentally observed "resonances". In particular we are led to classify the 0^{++}enhancements known as the ϵ, S^{*} and δ as $\mathrm{QQ} \overline{\mathrm{Q}} \overline{\mathrm{Q}}$ states. If correct, this assignment disrupts further the already uneasy state of the P wave mesons in the quark model.
broad exotic $Q Q \bar{Q} \bar{Q}$ states and the P-wave baryons states overlap broad $4 Q \bar{Q}$ states. In such cases one might expect that mixing effects will play an essential role in an unravelling of partial widths. This may provide a clue to an understanding of some of the elusive P-wave states such as the A_{1}.

Can explain why $a_{0}(980)$ heaviest without strangeness Exotic component is to be mixed (via instanton int.)

Classification

$$
3 \otimes 3=\overline{3} \otimes 6
$$

Quantum numbers and operators
$J^{P} \quad$ Color
Flavor
Operator
0^{+}
1^{+}
$\overline{\mathbf{3}}$
$\overline{3}$

$$
\bar{\psi}_{\mathcal{C}} \gamma_{5} \psi, \quad \bar{\psi}_{\mathcal{C}} \gamma_{0} \gamma_{5} \psi
$$

6 $\bar{\psi}_{C} \gamma_{i} \psi, \bar{\psi}_{C} \sigma_{0 i} \psi$
0^{-}
1^{-}
$\overline{3}$
$\frac{6}{3}$
$\bar{\psi}_{C} \psi, \bar{\psi}_{C} \gamma_{0} \psi$
$\bar{\psi}_{C} \gamma_{i} \gamma_{5} \psi, \quad \bar{\psi}_{C} \sigma_{i j} \psi$

Diquark Phenomenology

$\Delta I=1 / 2$ rule in non-leptonic weak decay

$$
\begin{aligned}
\Delta I=1 / 2 & \gg \Delta I=3 / 2 \\
& \times \sim 20
\end{aligned}
$$

Stech, Neubert, Xu, Dosch (1987~)
Fierz transformed interaction:

$$
\begin{array}{r}
V_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}\left[c_{-}(u d)_{3}^{\dagger}(s u)_{\overline{3}}+c_{+}(u d)_{6}^{\dagger}(s u)_{6}+\cdots\right] \\
\Delta I=1 / 2 \quad \Delta I=1 / 2,3 / 2
\end{array}
$$

Enhanced by diquarks

Diquark on Quenched Lattice

 Lattice in Landau gauge (Hess-Karsch-Laermann-Wetzorke 1998)

$$
\begin{gathered}
m_{\text {good }}=694(22) \mathrm{MeV} \\
\left(m_{\pi} \simeq 350 \mathrm{MeV}\right)
\end{gathered}
$$

Mass splitting from $S=1$ and $S=0$

$$
m_{\text {bad }}-m_{\text {good }} \approx \frac{1}{2}\left(m_{\Delta}-m_{N}\right)
$$

Diquark on Lattice

 Density-density correlator (Alexandrou-de Forcrand-Lucini 2005)

Idealized : static-light-light baryon system

$$
C\left(\boldsymbol{r}_{u}, \boldsymbol{r}_{d}\right)=\langle N| \rho^{u}\left(\boldsymbol{r}_{u}\right) \rho^{d}\left(\boldsymbol{r}_{d}\right)|N\rangle
$$

Lucini et al. (2006)

Correlation $0^{+}>1^{+} \gg 0-$
Characteristic diquark size
$\sim 1.1 \pm 0.2 \mathrm{fm}$ Leinweber (1993)
Larger than meson size

Diquark and Deconfinement

Deconfinement in $p Q C D$

 pQCD justifies itself at high T All gluons are screened by $g T$ or $g^{2} T$
pQCD does not justify itself at high μ

 Magnetic gluons never screenedSuperdense Matter: Neutrons or Asymptotically Free Quarks?
J. C. Collins and M. J. Perry

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, England (Received 6 January 1975)

Insufficient justification

Color super justifies pQCD at high μ All gluons are screened by $\boldsymbol{g} \mu$

No Deconfinement?

Large- $N_{\mathbf{c}}$ Baryonic (Quark) Matter

$$
\mathcal{O}(1) \quad \longrightarrow \mathcal{O}\left(N_{\mathrm{c}}\right)
$$

Quarkyonic Matter

McLerran, Pisarski Hidaka, Kojo
Fukushima, Sasaki

Deconfinement Revisited

CFL (3-flavor CSC) reads:

SU(3)c broken completely
All 8 gluons get massive (Meissner effect)

No confinement remains

Can this be a "definition" of deconfinement?

Private communications with Gordon Baym
If so, quark matter is realized only through diquarks

Continuity from NM to QM

$\mathrm{U}(1)_{\mathrm{A}}$ Symmetric

$$
\pi^{+} \sim(u)(\bar{d}) \sim(\bar{d} \bar{s})(s u)
$$

a)

U(1)A Broken

b)
('t Hooft-Isidori-Maiani-Polosa-Riquer 2008)

Diquark Continuity

EoS of Quark Matter

Diquark Continuity

EoS of Quark Matter

P

 (Quarkyonic) Diquarks

EoS of Nuclear Matter

Implication to the $M-R$ Relation

$M / M_{\text {sun }}$

10~13km
R

Implication to the $M-R$ Relation

 reannand$M / M_{\text {sun }}$

Pressure at the center
$10 \sim 13 \mathrm{~km}$
R

Cannot be right!?

June 9 @ QCDPSIII (Wuhan)

Duality Hypothesis

EoS of Quark Matter

P

Dual region describable with APR and NJL Strong constraint from APR to NJL

EoS of Nuclear Matter
μ

APR-constrained NJL

All non-perturbative effects renormalized in G_{V}

APR can be reproduced with "running" vector interaction

Best fit function \sim inverse \log

$$
\begin{aligned}
& \text { cf. } \quad \alpha_{\mathrm{s}}(\mu)=\frac{1}{b \log (\mu / \Lambda)} \\
& \text { Suggestive!!! }
\end{aligned}
$$

Nuclear matter knows the running coupling?

APR-constrained NJL

Fukushima-Kojo (2015)

Weak 1st-order Phase Transition (2SC-CFL)
Single unified theory covering all the densities!

M-R Relation

 Fukushima-Kojo (2015)

June 9 @ QCDPSIII (Wuhan)

Summary and Speculation

Summary

Nuclear Matter = 2SC + Chiral Cond. + 6-diquark
\square More reasonable than CFL-NM continuity
\square Chance to access the diquark superfluid phase in HIC?
\square Enhanced fluctuations from (critical) diquarks
\square Refined HRG with diquarks?
New Model = APR-constrained NJL
\square Microscopic information superseding parametrization
\square Less crazier than using APR to $\sim 5 n_{0}$! (Ask Toru!)
Spectroscopy of Qqq baryons?

Provocative Speculation

Quantum percolation at $p=p_{q}$

(Nothing happens) (Anderson Metal-Insulator Transition)

(Confined)	$\begin{array}{l}\text { Quarkyonic } \\ \text { Nuclear Matter }\end{array}$	$\begin{array}{l}\text { (Deconfined) } \\ \text { Regime }\end{array}$
Quark Matter		

Chemical potential μ
Concentration p

