

Beam energy dependence of strangeness production

Xianglei Zhu (Tsinghua University)

QCD phase structure III, 6-9 June 2016 Central China Normal University

Outline

- > Strangeness production in heavy ion collisions
- > Strangeness measurements in STAR
 - ✓ Beam energy scan: Au+Au 7.7 39 GeV
 - ✓ Top RHIC energy: p+p, Au+Au 200 GeV, U+U 193 GeV
- > Summary

s quarks: good probe for QCD phase transition & QGP properties

- ➤ Beam Energy Scan at RHIC
 Look for onset of de-confinement,
 phase boundary and critical point
 Au+Au collisions at 7.7, 11.5, 19.6,
 27, 39, 62.4 GeV
- ➤ U+U collisions at 193 GeV System energy density dependence
- >Key observables
 - (1) Strangeness enhancement
 - (2) Baryon/meson ratio

Parton recombination

(3) Nuclear modification factor

Partonic energy loss & recombination

STAR, arXiv:1007.2613; NA49, PRC78, 034918

Detector settings

Au + Au at Run10, $lv_{J}l < 50$ cm

7.7 GeV

STAR preliminary

39 GeV

400

Uncorrected N_{ch}

Data

 $dN_{\rm evt} / (N_{\rm evt} \, dN_{\rm ch})$

10⁻¹

10⁻²

10⁻³

10⁻⁴

10⁻⁵

10⁻⁶

7.7 GeV *

11.5 GeV 39 GeV 62.4 GeV 200 GeV

200

ГРС

* lv_zl<70 cm

for 7.7 GeV

600

Collisions centrality from uncorrected $dN_{ch}/d\eta$ in $|\eta| < 0.5$

Year	Collisions	$\sqrt{s_{NN}}$ (GeV)	MB events in Million
2010	Au+Au	7.7	~ 4 M
2010	Au+Au	11.5	~ 12 M
2014	Au+Au	14.5	~ 18 M
2011	Au+Au	19.6	~ 36 M
2011	Au+Au	27	~ 70 M
2010	Au+Au	39	~ 130 M
2011	Au+Au	200	~ 480 M
2012	U+U	193	~ 270 M
2009	p+p	200	~ 107 M
			1

Particle identification and reconstruction

5000

1.01 1.02 1.03 1.04

M_{K*K} (GeV/c²)

• Weak decay particles $(K_S^0, \Lambda, \Xi, \Omega)$, secondary vertex + invariant mass

p_T spectra (39 GeV)

- > Extensive strange particle spectra
- $\triangleright \Lambda(\overline{\Lambda})$ spectra are weak decay feed-down corrected
 - ~ 20% for Λ ;
- $\sim 25\%$ for Λ

Statistical error

Particle yields

mid-rapidity, most central collisions (0-5%)

- STAR results are consistent with published data in general
- A yields seem to show dip around $\sqrt{s_{NN}} = 39$ GeV. The baryon stopping at mid-rapidity decreases with increasing energy

Particle ratios

RHIC BES

J. Randrup et al., PRC 74, 047901 (2006)

most central (0-5%), mid-rapidity, stat. + sys. error

- ➤ Particle ratios consistent with NA49, consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out
- Associate production channels like $N + N \rightarrow N + \Lambda + K^+$ may be important for K^+ production, N is nucleon

Particle ratios

most central (0-5%), mid-rapidity, stat. + sys. error

- □ Clear K^- , $\overline{\Lambda}$, $\overline{\Xi}^+$ yield enhancement compared to pions with increasing collision energy
- \Box Similar behavior for hidden strangeness $\phi(s\bar{s})$

\overline{B}/B ratios

- Centrality dependence of \overline{B}/B ratios: peripheral > central
- This effect is more prominent at lower energies.
 baryon stopping, anti-baryon absorption
- Loss of low p_T $\overline{\Lambda}$ in central collisions

Excitation function of \overline{B}/B ratios

Left: Solid red: STAR BES; Solid blue: STAR published; Open blue: NA49

- STAR BES data lie in a trend with NA49 data
- \overline{B}/B ratios increase with number of strange quarks at low energies $\overline{\Omega}^+/\Omega^- > \overline{\Xi}^+/\Xi^- > \overline{\Lambda}/\Lambda$

Anti-baryon to baryon ratio

$$n_{i} = \frac{g_{i}}{(2\pi^{2})} \gamma_{S}^{|S_{i}|} m_{i}^{2} T K_{2}(m_{i}/T) \exp(\mu_{i}/T)$$

$$\frac{\overline{\Lambda}}{\Lambda} = \exp(-\frac{2\mu_{B}}{T} + \frac{2\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Lambda}}{\Lambda}) = -\frac{2\mu_{B}}{T} + \frac{2\mu_{S}}{T}$$

$$\frac{\overline{\Xi}^{+}}{\Xi^{-}} = \exp(-\frac{2\mu_{B}}{T} + \frac{4\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Xi}^{+}}{\Xi^{-}}) = -\frac{2\mu_{B}}{T} + \frac{4\mu_{S}}{T}$$

$$\frac{\overline{\Omega}^{+}}{\Omega^{-}} = \exp(-\frac{2\mu_{B}}{T} + \frac{6\mu_{S}}{T}) \qquad \ln(\frac{\overline{\Omega}^{+}}{\Omega^{-}}) = -\frac{2\mu_{B}}{T} + \frac{6\mu_{S}}{T}$$

- T is the temperature.
- \triangleright μ_B is the baryon chemical potential.
- \triangleright μ_S is the strangeness chemical potential. (arXiv:nucl-th/9704046v1 by J.Cleymans & Phys. Rev. C 71(2005)054901)

μ_B and μ_s correlation

- Anti-baryon to baryon ratios are consistent with statistical thermal model
- μ_s/μ_B seems to be smaller in 11.5 19.6 GeV than in 39 and 7.7 GeV

Strangeness, LQCD and freeze-out in HIC freeze-out T by comparing $\mu_{\text{S}}/\mu_{\text{B}}$ from LQCD and expt.

indirect evidence for so-far undiscovered strange baryons at RHIC?

From Swagato Mukherjee

not reproduced by hadron gas with only PDG states

reproduced when additional Quark Model (QM) predicted strange baryons are taken into account

Nuclear modification factors R_{CP}

 ϕ meson R_{CP}: 0-10%/40%-60%

$$R_{\rm CP}(p_T) = \frac{[d^2\sigma/(N_{\rm bin}p_Tdp_Tdy)]_{\rm central}}{[d^2\sigma/(N_{\rm bin}p_Tdp_Tdy)]_{\rm peripheral}}$$

- No K_S^0 suppression in Au+Au 7.7, 11.5 and 14.5 GeV
- Cronin effect takes over partonic rescatterings @ lower energies
 - Intermediate p_T , particle R_{CP} difference becomes smaller @ 7.7 and 11.5 GeV

$\overline{\Lambda}$ / K_S^0 ratio

 $\sqrt{s_{NN}} \le 14.5$ GeV, at p_T ~ 2GeV/c, the separation of central (0-5%) and peripheral (40-60%) collisions in \overline{L}/K_S^0 becomes less obvious

Ω / ϕ ratio

Phys. Rev. C 93, 2016, 021903 (R)

Ω in Au+Au vs in U+U at top RHIC energy

- U+U collisions expected to have 20% higher energy density
- How is the Ω enhancement in U+U?
- Ω yield suppressed at high p_T in Au+Au? and even more suppressed in U+U?

p_T spectra

* $\frac{y}{<0.5}$, statistical error only

STAR, Phys. Rev. C 75 (2007) 064901

STAR, Phys. Rev. Lett. 98 (2007) 062301

* only central (0-5, 5-10%) new Au+Au and U+U data available so far

- Maximum p_T ~ 6 GeV/c for both Au+Au and U+U central collisions
- Yields (U+U > Au+Au)

Strangeness enhancement factor

New p+p 200 GeV data as reference for both new Au+Au 200 GeV and U+U 193 GeV

ALICE, Phys. Lett. B 728 (2014) 216

NA57, J. Phys. G 32 (2006) 427;

NA57, J. Phys. G 37 (2010) 045105

STAR, Phys. Rev. C 77 (2008) 044908

- Significantly reduced reference uncertainty at RHIC
- Larger enhancement than LHC, lower than SPS
- Larger enhancement in central (0-5%) U+U than in central (0-5%) Au+Au (strangeness enhancement not saturated)

Ratios to pion

- RHIC data are lower than LHC
- Ω/π (LHC>RHIC) in p+p, canonical suppression

Nuclear modification factor (R_{AA})

$$R_{AA} = \frac{\sigma_{NN}^{\text{inel}}}{N_{\text{bin}}^{AA}} \frac{d^2 N_{AA}/dyd \ p_T}{d^2 \sigma_{pp}/dyd \ p_T}$$

Statistical error only for Ω

 $\underline{\pi^+ + \pi^-} \text{ and } \underline{p} + \underline{p}: 0-12\%,$ STAR, Phys. Rev. Lett. 97 (2006) 152301
STAR, Phys. Lett. B 637 (2006) 161
STAR, Phys. Rev. C 81 (2010) 054907

 $K^{\pm} + p(\bar{p}): 0-12\%$, STAR, Phys. Rev. Lett. 108 (2012) 072302

- Ω baryon R_{AA} much larger than proton/pion up to 4 GeV/c
 - $\rightarrow \Omega$ suppression in p+p
 - → Interplay of strange quark energy loss and coalescence or recombination in Au+Au

Ratio of nucl. mod. factors (R_{III}/R_{AIIAII})

Higher energy density

 \rightarrow *Jet more quenched*

$$R_{UU}/R_{AuAu} < 1$$
 at high p_T

→ Strangeness enhancement

(Coalescence?)

 $R_{UU}/R_{AuAu} > 1$ at intermediate p_T

*
$$Au + Au \ 200 \ GeV \ 0-10\%$$

 $N_{part} = 325 \ \pm 4; \ N_{bin} = 941 \ \pm 26$
* $U + U \ 193 \ GeV \ 0-10\%$
 $N_{part} = 387 \ \pm 4; \ N_{bin} = 1151 \ \pm 18$

The energy density in central U+U is expected to be 20% higher, but N_{bin} -scaled high $p_T \Omega$ yield is not more suppressed

 $\rightarrow \Omega$ formed through coalescence/recombination up to p_T ~ 6 GeV/c?

Summary

- > STAR has measured systematically the production of various strange hadrons in $\sqrt{s_{NN}} = 7.7 200$ GeV and in different collision systems
- ➤ Particle yields and ratios are consistent with the picture of a maximum net-baryon density around $\sqrt{s_{NN}} \sim 8$ GeV at freeze-out, baryon transport to mid-rapidity is important
- ightharpoonup Clear K^- , ϕ , $\overline{\Lambda}$, $\overline{\Xi}^+$ yield enhancement compared to pions with increasing collision energy
- ► Intermediate p_T Ω/φ ratios and nuclear modification factors show clear separation between 200 19.6 GeV and below 11.5 GeV, indication of **possible phase transition below 19.6 GeV**
- $\blacktriangleright \Omega$ R_{AA} (0-5%) is above 3 up to 4 GeV/c and R_{UU}/R_{AuAu} (0-10%) does not show suppression up to 6 GeV/c
 - $\rightarrow \Omega$ formation in central collisions may be dominated by strange quark coalescence/recombination up to $p_T \sim 6 \text{ GeV/c}$

Plans for Beam Energy Scan II

iTPC upgrade:

Replace ageing wires;

Sparse pads → cover full area;

→ better dE/dx;

 $-1 < \eta < 1$ \rightarrow $-1.5 < \eta < 1.5;$

 $p_{\rm T}$ >125 MeV \Rightarrow $p_{\rm T}$ >60 MeV/c.

EPD upgrade:

Replaces ageing BBC, which wasn't designed for BES phys.

Greatly improved Event Plane info (esp. 1st-order EP);

Alternative Centrality definition Better trigger & b/g reduction.

Other:

Hcal Endcap TOF

Fixed Target Program with STAR

Baryon Chemical Potential μ_{R}

- Extend energy reach to overlap/complementary AGS/FAIR/JPARC
- Real collisions taken in run 14 and results (K. Meehan @ QM15 & WWND16)
- Upgrades (iTPC+eTOF+EPD) crucial
- Unprecedented coverage and PID for Critical Point search in BES-II
- Spectra, flow, fluctuations and correlations

Outlook

Backup

Beam energy dependence of $\langle m_T \rangle$ - m_0

For heavy strange hadrons ϕ , $\overline{\Lambda}$, Ξ , <m $_T>$ - m_0 show increasing trend with energy, **mass matters** Λ , Ξ : Solid red, STAR BES, 0-5% most central, statistical error only Solid blue, STAR published, most central, PRL 89, 092301; PRL92, Φ meson, statistical error 182301. Open, NA49, most central, from NA49, PRC78, 034918 29

Anti-baryon to baryon ratio

$$\ln(Ratio) = -\frac{2\mu_B}{T} + \frac{\mu_S}{T} \times \Delta S$$

Cross the same point and straight line

→ Thermal statistical fit works!

Anti-baryon to baryon ratio

$$T \approx T_0 - b\mu_B^2$$

$$\mu_B = \alpha \frac{\log \sqrt{S_{NN}}}{(\sqrt{S_{NN}})^{\beta}}$$
Where:
$$T_0 = 167.5 MeV$$

$$b = 0.1583 GeV^{-2}$$

$$\alpha = 2.06$$

$$\beta = 1.13$$

Parameters are from the fitting of published data of AGS, SPS and RHIC 130 GeV data.

Reference: F.Becattini et al. Phys Rev C 73, 044905 (2006)

μ_s and μ_B correlation

NCQ-scaled Ω/ϕ ratio

arXiv:1506.07605

One single strange quark distribution describes both Ω and φ spectra, a necessary condition for quark coalescence production

$$f_s(p_T) = \frac{g_{\phi}}{g_{\Omega}} \frac{c}{1 + c^3} \frac{f(\Omega^- + \Omega^+)(3p_T)}{f(\phi)(2p_T)}$$

➤ Suppression of strange quark production below 19.6 GeV, slope change at 7.7 GeV. Decreasing s quark density → phase transition

Different strangeness production scenarios

HADES: Phys. Rev. C 80, 025209 (2009)

E917: Phys. Rev. C 69, 054901 (2004)

NA49: Phys. Rev. C 78, 044907 (2008) STAR 62.4, 130 & 200 GeV: Phys. Rev. C 79, 064903 (2009)

Thermal model-PBM: Nucl. Phys. A 772, 167 (2006)

Redlich model: Phys. Lett. B 603, 146 (2004)

Statistical + systematical error

- ➤ Canonical statistical model: "**\phi** is more suppressed than K⁻ at small phase space"
- > Strangeness quark pairs $(s\bar{s})$ correlation, radius R_C : 2.2 4.2 fm "K⁻ is more suppressed than ϕ at small phase space"

Particle yields

mid-rapidity

