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Jets and Missing ET	
•  Jets are one of the most prominent 

physics signatures at high energy 
colliders 

•  Individual jets are proxies for quark 
and gluons 

•  Combinations of jets are used to 
identify heavy electroweak particles 
(W,Z,H bosons and the top quark) 
o  crucial signatures for searches of 

new phenomena and precision 
measurements 

•  Jets have internal structure: 
quantum properties 
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Jets and jet algorithms (I)	
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•  Quark and gluons 
(partons) 
produced at short 
distances (hard 
process) 

•  As they propagate 
they radiate more 
partons (parton 
shower) 

•  Form uncolored 
hadrons 
(hadronization) 
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Jets and jet algorithms (II)	
•  Jet algorithms: set of rules to group particles together 

and to assign a momentum to the resulting jet 
•  Infrared and collinear safe 
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•  LHC uses sequential recombination jet algorithms 
o  Kt, C/A, anti-kt   



Jets and jet algorithms (III)	
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dij =min(pti
2 p, ptj

2 p )
ΔRij

2

R2
, diB = pti

2 p



Jets and Missing ET	
•  Jets are tools to organize and interpret 

events 
•  Multiple interpretation of events 
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anti-kt 

C/A 

G. Salam 
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MJJ = 7.5 TeV 

Hàbb + missing ET 

4 top candidate VBF Hàγγ 
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2010 2011 2012 

Pile-up in Run 1	
<PU>=20.7 <PU>=9.1 

HL-LHC 
<PU>~200! 



High pile-up	
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78 pile-up vertices! 
CMS high pile-up run 198609  



Goal of this talk	

15 



ATLAS and CMS Detectors	
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ATLAS and CMS Detectors	
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B=2T 
B=4T 

3 longitudinal HAD layers 

3 longitudinal EM layers 

Solenoid before 
calorimeter 

Highly segmented ECAL 

Solenoid outside 
calorimeter 

B=2T 

LAr cryostat 



ATLAS and CMS Detectors	
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High magnetic field 
Very fine transverse EM granularity 
 

Low pT tracking 
Good separation between photons 
and pion showers  
 

Low pT charged particles do not 
reach the calorimeter à need to 
integrate tracking with calorimeter 
information  

Excellent hadron energy resolution 
Longitudinal EM/HAD segmentation 
Fine transverse segmentation  
 
Can use shower shape information 
and 3-dimensional clustering to 
identify and calibrate EM/HAD 
energy depositions à More handles 
for calorimeter-based jet 
reconstruction and calibration 
 
 
 
 



Jet reconstruction overview	
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Calorimeter 
Topo-clusters jets Track 

corrections 

Calorimeter 
clusters + 

tracks 
jets Particle flow 

objects 

ATLAS 

CMS 



•  Topological clustering 
o  Three-dimensional clustering algorithm at the level of 

individual calorimeter cells 
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Jet reconstruction at ATLAS	

Noise suppression 
 limit the formation and 

grow of clusters from 
electronic and pileup noise 

Local calibration 
 

EM/HAD classification and 
calibration 

Reduce pile-up contributions 	
before jet finding 	

Improves the linearity of the 	
jet energy response and the	
energy resolution	



Jet reconstruction at ATLAS	
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μ=40 

     	

•  Topological clusters:  
o  3D nearest-neighbor algorithm that clusters calorimeter cells with energy 

significance (|Ecell|/σ) >4 for the seed, >2 for neighbors, and >0 at the 
boundary 

•  Sigma noise (σ): electronic + pileup noise 
o  Adjusted with μ for  pileup noise suppression 

2010: σ(μ=0) 
2011: σ(μ=8) 
2012: σ(μ=30) 
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Topoclustering  
pile-up suppression	

Sigma noise provides particle (cluster) level pile-up suppression 
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mu=80 

σ noise
pileup(µ = 40) σ noise

pileup(µ = 80)

mu=80 



Local cluster calibration	

	 C
lu
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Average cell signal density	

Use local cluster shape information to classify and calibrate EM/
HAD clusters. Calibrations derived using single pion Monte Carlo 
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CMS Particle Flow	
•  Reconstruct individually each particle combining 

tracking and calorimeter information: 
o  Relies on high granularity and resolution of ECAL and high magnetic field 

to separate individual showers 
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65% charged hadrons à Tracker 
25% photons à ECAL 
10% neutral hadrons à HCAL 

Picture from	
h>p://bartosik.pp.ua/hep_sketches/cms_particle_flow	



Particle Flow	
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HCAL 

ECAL 
Tracks 

65% charged hadrons à Tracker 
25% photons à ECAL 
10% neutral hadrons à HCAL 

•  Performance limited by 
confusion: ability to separate 
individual particle showers) 
o  Need High granularity, B field 

CMS PAS PFT-09-001 

Average (large fluctuations) 
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Particle (truth) jet 

Reconstructed  
jet 

Jet calibration overview	

Calibration 

Input signals: 
 

Topo-clusters 
PFlow objects 

jets Calibration 

•  Calorimeter non-compensation 
•  Inactive regions of the detector 
•  Energy deposits below thresholds 
•  Particles not included in the jets 
•  Pile-up 
•  Data / Monte Carlo scale 

R(E,η) = Ereco

Etruth

Jet energy  response: 



Jet calibration overview	
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Jet calibration overview	
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pileup 

More jets N
um

b
e

r o
f j

e
ts

 

Average PU 

The challenge of pile-up	

Additional energy (offset) 
Fluctuations: 

•  Reduce accuracy of the jet energy and 
mass determination  

•  Additional fake pileup jets 

 

Hard  
scatter jet QCD pileup 

jet 

“Stochastic” 
pileup jet 

One the most difficult challenges at the LHC 
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pileup 

More energy 



Pileup mitigation:  
four key ideas	
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Jet-Vertex Tagging 
 

Use of tracking information to 
reject jets from pileup   

Grooming 
 

Reduce local 
fluctuations of pileup 

(Large-R jets) 

Constituent level 
pile-up suppression 

 

Topo-clustering(ATLAS 
Charged Hadron Subtraction 

and PUPPI (CMS) 

Area-Median 
Subtraction 

 
 

pT
jet,corr = pT

jet − ρ × AT
jet



Pileup subtraction (I)	
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arXiv:0707.1378 [hep-ph] 

pT
jet,corr = pT

jet − ρ × AT
jet
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Event-by-event 
estimate of 
diffuse noise 

Jet Area: 
susceptibility to 
diffuse noise 
contamination  



Pileup subtraction (II)	
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arXiv:0707.1378 [hep-ph] 

pT
jet,corr = pT

jet − ρ × AT
jet

ΔpT = ρA±σρ A

band 

line 

 	
	
 	

	

Geometrical 
contamination 

Fluctuations in 
the noise from 
point to point 
in the event 



Improvement 
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Pileup subtraction	
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Improvement 

•  Significant improvement of the jet pT resolution 
•  10-20% reduction in jet-by-jet pileup fluctuations 

Jet energy 
resolution 

offset 
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anti-kt R=0.4 anti-kt R=1.0 C/A large-R 

R=1.0 

R=1.2 



band 

line 

 	
	
 	

	

Local pile-up fluctuations	
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pT
jet,corr = pT

jet − ρ × AT
jet

ΔpT = ρA±σρ A
Geometrical 
contamination 

Fluctuations in 
the noise from 
point to point in 
the event: local 
fluctuations 

Local fluctuations 

 	
	 	

	

Area subtraction 



CMS Charged Hadron 
Subtraction	

36 

Improvement 

HS PU 

Remove charged 
pile-up tracks 
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Rejecting jets from pileup	
•  Pileup can create pileup jets: 

•  QCD jets originating from a pileup vertex 
•  Random combination of particles from multiple pileup 

interactions (“stochastic pileup jets”) 
 

pileup 

More jets 
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Jet Vertex Tagging / JetID	

ATLAS-CONF-2013-083 
CMS PU Jet ID:  CMS PAS JME-13-005  

•  Jet vertex fraction algorithm (JVF)  
o  Tag and reject pileup jets using 

tracking and vertexing information 

JVF = ΣpT
trk (PV0 )

ΣpT
trk (PV0 )+ΣpT

trk (PUn )

Jets with no tracks 

PU jets 

HS jets 
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JVF pileup jet suppression	

JVF 

improvement 

•  JVF restores the Njet 
distribution as a 
function of pileup 

 

•  Improves the     
data/MC 
agreement 



Jet calibration overview	
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Jet energy scale correction	
•  Multiplicative factor (JES) derived as a function of jet pT (E) 

and η in di-jet Monte Carlo events: JES = 1 / R(E, η) 

41 

Particle (truth) jet 

Reconstructed  
jet 

R(E,η) = Ereco

Etruth

JES 

Jet |η| 
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Reducing fluctuations (I)	

In non-compensating (e/h>1) 
calorimeters, the energy 
resolution is driven by the large 
fluctuations in the EM shower 
fraction 
 
ATLAS uses a method inspired  
by dual-readout calorimetry to 
improve the jet energy 
resolution 
 

Slide from R. Wigmans lecture 1 

     	
	



Reducing fluctuations (II)	
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Higher than  
average response 

Lower than  
average  
response 

Average response 
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Global Sequential Calibration	

Number of 
tracks 

Jet (track) 
width 

Tile layer 0 
energy 
fraction  

EM layer 3 
energy 
fraction  

Tracking variables 
Calorimeter variables 

Sensitive to quark/gluon differences Sensitive to LAr cryostat energy loss  

Muon variables 

Number of 
muon 

segments 

•  Use jet-by-jet information to correct the response of each jet 
individually after the average JES correction 
o  Reduce fluctuations in the jet energy response                            

due to detector effects 
o  Reduce the difference in response between                            

quark and gluon initiated jets 

Sensitive to leakage  
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Global Sequential Calibration	
Quark/Gluon response difference Jet energy resolution  

Improvement from  
tracking variables Improvement from  

tracking variables  
at low pT 

Improvement from  
calorimeter  
variables at high pT 



Jet calibration overview	
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Residual in situ jet energy scale correction: 
•  Brings the energy response of jets in data and MC to 

agreement, reducing a major source of systematic uncertainty 

•  Jet energy scale uncertainty determined by the uncertainty 
on the measurement of the jet response in data 

JESinsitu =
pT
jet / pT

ref

MC

pT
jet / pT

ref

DATA

Reference objects: 
Z, γ, jets 

CMS DP -2016/020	
JETM-2016-002	



In situ jet energy calibration	
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Relative η inter-calibration Absolute pT calibration 

Di-jet events 
 
Z/γ+ jet 

Multi-jet events 

Z+ jet 

γ+ jet multijet 



Systematic uncertainties	
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Jet quantum properties	
•  Exploit the internal jet (and 

event) substructure to 
measure jet quantum 
properties: 
o  Electric charge 
o  Color charge 

•  Quark vs. gluons 
•  Color connections 

between jets 

•  Tools to enhance precision 
measurements (Higgs, VBF 
final states) and to 
characterize new physics  

49 



Jet charge (I)	

   

Weighted sum over track 
charges is an experimental 
handle on the electric charge 
of jets (Field, Feynman, 1978) 
 50 

Qj =
1

(pTj )
κ

qi × (pT
i )κ

i∈tracks
∑



Jet charge (II)	
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Qj =
1

(pTj )
κ

qi × (pT
i )κ

i∈tracks
∑

ATLAS-CONF-2013-086 
CMS PAS SMP-15-003 



•  Observable designed to 
be sensitive to the color 
connections between the 
hard-scatter partons 
initiating the jets  
o  Multiple physics 

applications (QCD, 
Higgs, new particle 
searches…) 

52 ATLAS-CONF-2014-048 

Higgsàbb gluonàbb 

θP ~ π / 2θP ~ 0

Jet Superstructure (Schwartz and Gallicchio)  
arXiv:1001.5027 

pT
i ri
pT
J

!ri
i∈J
∑Jet Pull Vector 

θp(J1,J2) = angle between  
J1 pull vector and the vector 
connecting J1 and J2 

Color flow: jet pull (I)	
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Color flow: jet pull (II)	

•  Study jet pull in data using jets 
from hadronic W’s in ttbar events 

CMS-PAS-JME-14-002 
ATLAS-CONF-2014-048 



Quark-gluon jet tagging	
•  Distinguish quark from gluon 

initiated jets using jet 
properties that result from 
the different color charge 
between quark (CF=4/3) and 
gluon (CA=3) partons 

54 

Eur. Phys. J. C (2014) 74: 3023 
CMS-PAS-JME-13-002 

Ng

Nq

=
CA

CF

=
9
4

•  Gluons are expected to 
have more particles, be 
wider, and have a softer 
particle spectrum 



Quark-gluon jet tagging	
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Quark-like 

Gluon-like 



Boosted EW objects	
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R=0.4 Jet 

GKK H 

H 

b 

b 

b 

b 

DR 

R=0.4 Jet 

GKK H 

H 

b 

b 

b 

b 

Boosted regime: EW decay products are collimated and 
merged within a single jet 

Due to the large hierarchy of scales at the LHC (√s>>MEW), 
heavy electroweak particles can be highly boosted 

M(G) = 500 GeV 
DR(bb) ~ 1.0 

M(G) = 2 TeV 
DR(bb) ~ 0.25 

R ~ 2m
pT
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Boosted top pair 
candidate event 

q q 
W 

top 



Jet substructure	
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•  Two main challenges:  
o  Very large QCD background  
o  High pileup  

•  Contamination proportional to the area of the jet:  
o  x6 increase from R=0.4 to R=1.0 

 

Use large radius jets + internal jet 
structure: 
Large-R jets from the decay of a 
massive particle have different 
characteristics than jets originating 
from quarks and gluons (soft 
divergences in QCD) 
See K. Ellis’ lecture 3 •  Jet mass 

•  N-prong structure 
•  Radiation pattern 

Single large-R jet 

W 

q 

q 
q,g 

2-prong structure Soft emission 



Jet substructure	
Two major ideas: 
 

 

Many techniques! 
•  trimming, filtering, pruning, mass drop, soft drop, HEPTopTagger, 

Shower Deconstruction, N-subjettiness, planar flow, energy 
correlations, template method, jet images,… 

59 

Grooming 
 

Reduce 
contamination      

from pile-up 

Tagging 
 

Identify the internal 
structure of jets 

Reduce QCD background Improve the signal 
mass resolution 



Jet trimming (1/4)	

Pythia di-jet event (QCD background) 
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Jet trimming (2/4)	
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Anti-kt (R=1.0) jet built from topo-clusters (pT>20 GeV) 



Jet trimming (3/4)	
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Re-cluster jet constituents with the kt R=0.3 jet algorithm: subjets  



Jet trimming (4/4)	
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Remove soft subjets if pT
subjet < fcut.pT

jet



Jet trimming (QCD)	
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Grooming effectively reduces the area of jet, reducing 
the jet sensitivity to pileup fluctuations   



Jet trimming (W/Z)	
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Grooming retains the hard n-prong structure of boosted 
electroweak objects 



Trimming performance	

•  Improved mass 
resolution 
(sharpens the 
mass peak) 

 
•  Reduced QCD 

background 
(improved S/B)  

66 

Signal:  Zàqq, Background: QCD jets 

Trimmed 
jet mass 

Raw 
jet mass 

JHEP09 (2013) 076 



Top quark mass with 300 PU	
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SIGNAL:  Z’(2 TeV)àtt BACKGROUND:  QCD 

grooming 

SIGNAL:   
Z’(2 TeV)àtt 

BACKGROUND:   
QCD 



•  n-subjettiness: 
o Measures the n-prong 

structure of jets 
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W jets
QCD jets

(b)

Figure 2: Distributions of (a) τ1 and (b) τ2 for boosted W and QCD jets. For these plots, we
impose an invariant mass window of 65 GeV < mjet < 95 GeV on jets of R = 0.6, pT > 300 GeV,
and |η| < 1.3. By themselves, the τN do not offer that much discriminating power for boosted
objects beyond the invariant mass cut.
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W jets (purple/filled)
QCD jets (blue/open)

(b)

Figure 3: (a): Distribution of τ2/τ1 for boosted W and QCD jets. The selection criteria are the
same as in Fig. 2. One sees that the τ2/τ1 ratio gives considerable separation between W jets and
QCD jets beyond the invariant mass cut. (b): Density plot in the τ1–τ2 plane. Marker sizes are
proportional to the number of jets in a given bin. In principle, a multivariate cut in the τ1–τ2 plane
would give further distinguishing power.

to have large τ1, QCD jets with a diffuse spray of large angle radiation can also have large

τ1, as shown in Fig. 2(a). However, those QCD jets with large τ1 typically have large values

of τ2 as well, so it is in fact the ratio τ2/τ1 which is the preferred discriminating variable.

As seen in Fig. 3(a), W jets have smaller τ2/τ1 values than QCD jets. Of course, one can

also use the full set of τN values in a multivariate analysis, as suggested by Fig. 3(b), and

we will briefly explore this possibility in Sec. 3.4.

As mentioned in the introduction, N -subjettiness is adapted from the similar quantity

N -jettiness introduced in Ref. [28]. There are three important differences: the sum over

k only runs over the hadrons in a particular jet and not over the entire event, we do not

have candidate (sub)jets corresponding to the beam directions, and our distance measure

– 5 –

W jet tagging 	
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely

– 4 –
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely

– 4 –

W jet QCD jet 

Thaler & 	
Van Tilburg	

τ N =
1
d0

pT ,kmin∑ {ΔRk,axis−1,...,ΔRk,axis−n}

ΔR	



W jet tagging	
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Top tagging (Run 1)	
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C/A R=0.8 jets 

CMS-PAS-JME-15-002 



Higgs tagging	
•  Use small-R (R=0.2) track-jets to resolve b-hadrons at small 

angular distances  
•  Associate b-tagged track-jets to un-groomed large-R jets 
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•  Double b-tagging 
provides most of the 
discrimination power 

ATLAS-PHYS-PUB-2015-035 



Very high pT jets	
•  At very high boost, the 

decay products of EW 
objects can merge into 
single cells 

 
•  Track-assisted mass: 
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m =mtrack ×
pT
calo

pT
track

⎡

⎣
⎢

⎤

⎦
⎥

Low pT:  
Calorimeter better 

High pT:  
TA-mass better 

ATLAS-CONF-2016-035 

Measure  
substructure  
with tracks 

Measure pT with  
calorimeter 



Jets and machine learning	
•  Jet tagging as a computer vision problem 
•  Utilize state-of-the art image processing/classification to 

analyze jets in new ways 
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Deep learning W tagging	
•  New data representation: the jet-image 

o  Calorimeter towers à pixels in a camera 

•  Use all available calorimeter information  
•  Enable the use of cutting-edge computer 

vision image classification algorithms (deep 
neural networks) 
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

arXiv:1511.05190 
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Signal Efficiency
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Deep correlation jet-image: Pearson 
Correlation coefficient of pixels intensity 
with the network output:  
how discriminating information is 
contained within the network 
 

signal-like 

background-like 

•  Large performance gains beyond jet substructure observables 
•  Visualization of the discriminant adds a new capability to 

understand the physics within jets 

Deep learning W tagging	



Fuzzy jets	
•  View jet clustering as an 

unsupervised learning task 
•  For state-of-the-art clustering, every 

clustered object belongs to exactly 
one jet 

•  Fuzzy jets: incorporate probabilistic 
membership, in order to learn new 
features of the jet structure 
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•  Modified Gaussian 
Mixture Model (IRC 
safe) 

•  Algorithm learns    
the jet shape 

•  Improved top 
tagging performance 

arXiv:1509.02216 



Missing ET	
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•  One of the most important 
observables in searches for new 
physics (SUSY, dark matter) and 
precision measurements (H, W, top)  

•  Transverse momentum imbalance 
of the event 
o  Relies on the reconstruction (and 

calibration) of all high pT objects in 
the event, as well as the                
“un-clustered energy” 

o  Pile-up is a major challenge 

Ex(y)
miss = Ex(y)

HARD +Ex(y)
SOFT

Jets, e,μ,τ “unclustered” ET 

Track Soft Term (ATLAS) 
PV-tracks outside hard objects 
 

PUPPI (CMS) 
Scale the 4-momentum of 
pflow objects based on a local 
pile-up probability   
 



Missing ET Performance	
•  Measured in Z+jet events 

78 CMS-PAS-JME-16-004	

ATLAS-PHYS-PUB-2015-027	



Missing ET Significance	
•  Estimate the probability distribution for 

MET due to resolution fluctuations 
event-by-event 
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MET 

jet 

jet 

MET 

jet 

jet 

Low MET significance 

High MET significance 

CMS-PAS-JME-16-004 

S = 2 ln L(ε =MET )
L(ε = 0)

⎛

⎝
⎜

⎞

⎠
⎟



Summary	
•  Jets and missing ET are key signatures for the analysis of 

LHC data 
o  Quark, gluons, heavy electroweak particles 
o  Quantum properties  

•  ATLAS and CMS developed sophisticated techniques 
for the reconstruction and calibration of jets combining 
calorimeter and tracking information  
o  Different approaches motivated by the different detector 

strengths and capabilities 

•  Many different jet algorithms and jet substructure 
techniques have enabled a rich toolkit for the analysis 
and interpretation of events at the energy frontier 
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Backup	

81 



Reducing fluctuations (III)	

82 

Higher than  
average response 

Lower than  
average  
response 

Average response 



Forward pile-up jets	

•  Challenge: how to associate the 
vertex origin of forward jets, 
outside the inner tracker detector  

83 

? 



Forward pile-up jet tagging	
•  Use tracks in the central region to 

indirectly tag forward pileup jets: 
Exploit angular correlations of QCD 
jets produced in pile-up interactions 

84 Back-to-back QCD pile-up in the central region 



improvement 
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Forward pile-up jet tagging	

ATLAS-PHYS-PUB-2015-034 



Expanding the use of jets	

Many motivations to use jets with 
different R parameters 
•  Angular size of jets produced by a 

massive particle scales as  2m/pT 
•  Pileup contamination scales as R2 

 
Major experimental limitation:  
•  jet calibrations and uncertainties 

need to be derived for every jet 
collection  
 

86 

Jet mass calibration 
Colors: jet E 



Jet re-clustering	
•  Build jets from jets 
•  Introduce a new angular scale r < R at which jets are calibrated 
•  Cluster radius r jets into radius R jets 

o  Large-R jet calibrations (and uncertainties!) propagate from r to R 

87 

•  Allows for unprecedented flexibility to optimize the R jet 
parameter in the context of specific physics analyses 
o  Improve the discovery potential to new physics 

JHEP 02 (2015) 075	



Top jets 

W jets 

W jets 

Reclustered grooming	
•  Discard small radius r jets i re-clustered into large-R jet J if: 

88 

pT ,i < fcut.pT
J

•  Enables a natural transition between large-R and small-R jets 



89 

JVF pileup jet suppression	

improvement 

•  JVF restores the Njet distribution as a function of pileup 

•  Improves the data/MC agreement 
•  JVF makes the jet veto efficiency stable with pileup without 

the need to raise the jet pT threshold  

improvement 
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Jet calibration overview	
 

•  Two main goals: 
 

1.   Reduce fluctuations (improve resolution) 
•  Event-by-event pileup subtraction 
•  Jet-by-jet corrections 
 

2.   Reduce data/MC differences (improve uncertainty) 
•  Jet energy calibration determined from data (in-situ) 
•  Jet-by-jet techniques to reduce effects not well 

modeled 
o  Pile-up jets: Jet Vertex Fraction 
o  Flavor dependence of the response: Global 

Sequential Calibration 



Experimental challenges	
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Non-linear jet  
response 

Pile-up 

Eta-dependent response Flavor dependence 



Pileup subtraction	
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arXiv:0707.1378 [hep-ph] 

pT
jet,corr = pT

jet − ρ × AT
jet

ΔpT = ρA±σρ A

band 

line 

 	
	
 	

	

Determine the median pT 
density (ρ) per unit of area of 
each event, and the jet area (A) 
 

Geometrical 
contamination 

Fluctuations in 
the noise from 
point to point 
in the event 



•  gg 
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improvement •  JVF makes the jet 
veto efficiency 
stable with pileup 
without the need to 
raise the jet pT 
threshold  

VBF HiggsàZZàllll	

ATLAS-CONF-2014-018 



Pa^ern recognition and 
machine learning  

in jet physics	

94 



Computer vision: jet images	

95 

JHEP 02 (2015) 118 

Fisher discriminant 



Jet-image W tagging	

96 

•  Connection between jets and images enabled the use of computer 
vision algorithms to jet tagging for the first time 

•  Improved performance with respect to state-of-the art methods 
•  Visualization of the discriminant adds a new capability to 

understand the physics within jets and design more powerful jet 
tagging methods 

Improvement 
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Effect of  
sigma  
noise 

•  Linear behavior of rho 
up to high mu for fixed 
sigma noise values 

 

•  Higher pileup sigma 
noise values lead to 
partial suppression of 
pileup 

 

•  Optimization of 
topoclustering sigma 
noise is key to 
reconstruct jets at  
high luminosity 

 

Jet Area(R=0.4) ~ 0.5 
à Jet pT offset ~ <ρ>/2 

Topoclustering  
pileup suppression	
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New jet-vertex tagging 
variables	

•  Correct JVF for its pileup 
dependence: 

•  Use pileup-corrected 
observables: 

RpT =
ΣpT

trk (PV0 )
pT
jet

ATLAS-CONF-2014-018 

CorrJVF = ΣpT
trk (PV0 )

ΣpT
trk (PV0 )+

ΣpT
trk (PUn )
k nPU

trk
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Jet Vertex Tagger (JVT)	
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•  Search for events with four large-R jets and                               
use the total-jet-mass event-level observable                             
to separate signal from background:  

 
 

•  Large-R jets in high multiplicity events have                                
a multi-prong structure from the accidental                       
merging of partons resulting in large jet masses 
o  Jet masses do not correspond to a parent’s                          

particle’s mass 
 

•  Two assumptions: 
o  Jet rich environment  
o  Large-R Jet masses uncorrelated 

High multiplicity 
searches using jet mass	
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MJ
Σ = mjet

pT>100GeV
η <2.5

4

∑

A. Hook, E. 
Izaguirre, J. 
Wacker, et. al.  
(arXiv:1202.0558) 



 
Total-jet-mass	
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Signal event (gluino mass = 1 TeV) Background event 

MJ
Σ = 705GeV MJ

Σ = 260GeV 



Total-jet-mass	

Total jet mass sensitive 
to gluino mass and  
mass splitting: 
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m⌢g −m ⌢χ10
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Jet calibration	
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pT
calib = pT − ρA−α(NPV −1)−β µ( )× JES

Topo-clusters	
(pileup	

noise threshold)	

Local cluster 
weighting 

(LCW)	

Event-by-event  
pileup 

subtraction	

Residual offset	
(out-of-time, 
occupancy)	

Jet Energy 
Scale	

Jet energy scale 

Pileup noise:  
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Topo-clustering at high 
luminosity 	
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•  Adjust σ pileup noise for each μ configuration 
•  Optimization of local calibration for EM/HAD cluster classification for 

each pileup noise value 
o  Derived from single pion simulation with μ=0 and σ(μ>0) 

μ=140 μ=40 



Jet Vertex Tagging 
performance	

105 

VtxN
0 10 20 30

je
t v

et
o 

ef
fic

ie
nc

y

0

0.5

1

1.5

 > 20 GeV
T

p
 > 30 GeV

T
p

ATLAS Simulation Preliminary
 4l→ZZ→ Hqq’, H→qq’ 

 LCW+JES R=0.4tAnti-k
solid markers: inclusive
open markers: JVT>0.7

improvement 

VBF Hà4l 

ATLAS-CONF-2014-018 

 [GeV]ref
T

p
20 30 40 50 60

Ef
fic

ie
nc

y

0.7

0.8

0.9

1

1.1

Total Uncertainty
MC
Data

ATLAS Preliminary
-1 = 8 TeV, L = 20.3 fbs

µµ→Sherpa Z
 LCW+JES R=0.4tAnti-k

| < 2.4η < 50 GeV, |
T

20 < p
JVT > 0.2

20 30 40 50 60D
at

a 
/ M

C

0.96
0.98

1
1.02
1.04

JVT>0.2 
efficiency 



Jet charge in boosted W jets	

•  Different ways to define jet charge in a boosted W jet 
o  Using the sum of leading subjet charges leads to worse separation 

•  Optimal definition makes use of all associated tracks 
o  Grooming has not impact 106 

ATLAS-CONF-2013-086 



-210

-110

1
 fr

ac
tio

n
Tp 

y-4 -3 -2 -1 0 1 2 3 4

 [r
ad

ia
ns

]
φ

0

1

2

3

4

5

6

1

10

210

310

 [G
eV

]
Tp 

  Preliminary SimulationATLAS Pythia di-jet

-210

-110

1

 fr
ac

tio
n

Tp 

y-4 -3 -2 -1 0 1 2 3 4

 [r
ad

ia
ns

]
φ

0

1

2

3

4

5

6

1

10

210

310

 [G
eV

]
Tp 

  Preliminary SimulationATLAS Pythia di-jet

Jet trimming	
1.  Recluster jet constituents 

into kt subjets with small R 
2.  Discard subjets with:  

107 

pT < fcut.pT
jet

kt R = 0.3 
fcut = 0.05 

•  Jet contamination from pileup, 
underlying event, and initial state 
radiation is softer than hard-
scatter partons and final state 
radiation:  
o  Remove soft components of the jet 
o  Reduce the area of the jet 



Multijet event (R=0.4)	

108 
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Multijet event (R=1.0)	
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Multijet event (Trimming)	


