Future e+e- Linear Colliders

Philip Burrows

John Adams Institute, Oxford University

- Introduction
- The Large Hadron Collider + the Higgs boson
- A Higgs + top-quark factory
- The International Linear Collider (ILC)
- The Compact Linear Collider (CLIC)
- Project implementation and timelines
- The future

Large Hadron Collider (LHC)

Largest, highest-energy particle collider

CERN,

Geneva

A Higgs boson?

A Higgs boson?

The 2012 discovery

The 2012 discovery

It's officially a Higgs Boson!

(D, +) D + - U(+) - 4 F, F ~ Drop= Drop-ie Arg $= \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ $(= \partial_{\mu} A_{\nu} - \partial_{\mu} A_{\mu}$ $(= \partial_{\mu} A_{\mu} - \partial_{\mu} A_{\mu}$

Finger-printing the Higgs boson

- **Determine its 'profile':**
- Mass
- Width
- Spin
- CP nature
- Couplings to fermions
- Couplings to gauge bosons
- Yukawa coupling to top quark
- Self coupling → Higgs potential

Finger-printing the Higgs boson

Is it:

the Higgs Boson of the Standard Model?

another type of Higgs boson?

something that looks like a Higgs boson but is actually more complicated?

Finger-printing the Higgs boson

Is it:

the Higgs Boson of the Standard Model?

another type of Higgs boson?

something that looks like a Higgs boson but is actually more complicated?

 \rightarrow Measurements of the Higgs couplings to the different species of quarks, leptons and gauge bosons are the key to answering these questions

- **Snowmass Higgs working group:**
- **Decoupling limit:**
- If all new particles (except Higgs) are at a (high) high mass scale M
- deviations from SM predictions are of order m_H² / M²

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

Deviations in the range $1\% \rightarrow 10\%$

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$	

Deviations in the range $1\% \rightarrow 10\%$

→ measurements must be significantly more precise to resolve such deviations

LHC projections on Higgs couplings

Higgs Boson Decays at 125 GeV

LHC projections

Currently, typically LHC projected precisions on Higgs coupling measurements assume that:

- Standard Model is correct
- No non-Standard decay modes (total width = SM)
- Charm and top couplings deviate from SM by same factor

ATLAS projections

ATLAS Simulation Preliminary √s = 14 TeV: ∫Ldt=300 fb⁻¹ ; ∫Ldt=3000 fb⁻¹

ATL PHYS PUB 2013 014

Luca Fiorini, LHCC Dec 2013

CMS projections

L (fb ⁻¹)	κγ	κ_W	κ _Z	κ _g	κ_b	ĸ _t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

CMS Projection

CMS-NOTE-2013-002

Yurii Maravin, LHCC Dec 2013

LHC projections

Currently, typically LHC projected precisions on Higgs coupling measurements assume that:

- Standard Model is correct
- No non-Standard decay modes (total width = SM)
- Charm and top couplings deviate from SM by same factor
- Such assumptions are not necessary for Higgs coupling measurements at e+e- Higgs Factory ...

e+e- Higgs factory

- e+e- annihilations:
- E > 91 + 125 = 216 GeV
- E ~ 250 GeV

- E > 91 + 250 = 341 GeV
- E > 500 GeV

well defined centre of mass energy: 2E

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

polarised beam(s)

e+e- annihilations

well defined centre of mass energy: 2E complete control of event kinematics: p = 0, M = 2E

polarised beam(s)

clean experimental environment

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate.

European particle physics strategy 2013

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate.

Europe looks forward to a proposal from Japan to discuss a possible participation.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories. They can improve the precision of our knowledge of the W, Z, and top quark well enough to allow the discovery of predicted new-physics effects. They search for new particles in a manner complementing new particle searches at the LHC.

Snowmass executive summary 2013

Compelling science motivates continuing this program with experiments at lepton colliders. Experiments at such colliders can reach sub-percent precision in Higgs boson properties in a unique, model-independent way, enabling discovery of percent-level deviations from the Standard Model predicted in many theories. They can improve the precision of our knowledge of the W, Z, and top quark well enough to allow the discovery of predicted new-physics effects. They search for new particles in a manner complementing new particle searches at the LHC. A global effort has completed the technical design of the International Linear Collider (ILC) accelerator and detectors that will provide these capabilities in the latter part of the next decade. The Japanese particle physics community has declared this facility as its first priority for new initiatives.

e+e- Higgs Factory

ILC Higgs Factory possible roadmap

250 GeV:

Mass, Spin, CP nature Absolute meas. of HZZ BRs Higgs → qq, II, VV 350 GeV:

> Top threshold: mass, width, anomalous couplings ... (more stats on Higgs BRs)

500-600 GeV:

HWW coupling → total width → absolute couplings Higgs self coupling Top Yukawa coupling

 \rightarrow 1000 GeV: as motivated by physics

Higgs mass measurement

Recoil mass: - independent of Higgs decay

Discovery mode for 'H' decay to weakly-interacting particles $250 \,\text{fb}^{-1}@250 \,\text{GeV}$ $\Delta \sigma_H / \sigma_H = 2.5\%$ $\Delta m_H = 30 \,\text{MeV}$

(Fujii)

Higgs spin determination

Rise of cross-section near threshold

(TESLA TDR)

48

Higgs branching ratios determination (1)

 $250 \, {\rm fb}^{-1} @250 \, {\rm GeV}$ $m_H = 120 \, {\rm GeV}$

	@ 250 GeV
process	ZH
luminosity · fb	250
cross section	2.5%
	σ·Br
H>bb	1.0%
H>cc	6.9%
H>gg	8.5%
H>WW*	8.2%
Η>ττ	4-6%
H>ZZ*	28%
Η>γγ	23-30%

49

Higgs branching ratios determination (2)

measurements (independent)	precision	
$X_1 = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) @ 250 \text{ GeV}$	1.0%	٦
$X_2 = \sigma_{ZH} \cdot \operatorname{Br}(H \to c\bar{c}) @ 250 \text{ GeV}$	6.9%	
$X_3 = \sigma_{ZH} \cdot \operatorname{Br}(H \to gg) @ 250 \text{ GeV}$	8.5%	e^{-} z^{0} x^{0}
$X_4 = \sigma_{ZH} \cdot \operatorname{Br}(H \to WW^*) @ 250 \text{ GeV}$	8.2%	- >minin
$X_5 = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) @ 500 \text{ GeV}$	1.6%	e⁺ H``.
$X_6 = \sigma_{ZH} \cdot \operatorname{Br}(H \to c\bar{c}) \ @ \ 500 \ \mathrm{GeV}$	11%	
$X_7 = \sigma_{ZH} \cdot \operatorname{Br}(H \to gg) @ 500 \text{ GeV}$	13%	
$X_8 = \sigma_{\nu\bar{\nu}H} \cdot \text{Br}(H \to b\bar{b}) @ 500 \text{ GeV}$	0.60%	e ⁺
$X_9 = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to c\bar{c}) \ @ \ 500 \ \mathrm{GeV}$	4.0%	wŹ
$X_{10} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to gg) @ 500 \text{ GeV}$	4.9%	W SH
$X_{11} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^*) @ 500 \text{ GeV}$	3.0%	e v
$X_{12} = \sigma_{ZH}$	2.5%	

Total Width and Coupling Extraction One of the major advantages of the LC

To extract couplings from BRs, we need the total width:

$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

$$\Gamma_H = \Gamma(H \to AA) / BR(H \to AA)$$

In principle, we can use the A=Z, or W for which we can measure both the BRs and the couplings:

K.Fujii @ LCWS12, Oct.24, 2012

Higgs self-coupling determination

\sqrt{s} (GeV)	500	500	500+1000	500+1000
$L (fb^{-1})$	500	1600	500+1000	1600+2500
$\Delta\lambda/\lambda$	83%	46%	21%	13%

Higgs top-coupling determination

 $1 \, \mathrm{ab}^{-1} @500 \, \mathrm{GeV}$ $\Delta g_Y(t) / g_Y(t) = 10 \%$

(Price, Roloff)

ILC roadmap Snowmass study

- Baseline: 250 fb⁻¹ @ 250 GeV 3 years
 - 500 fb⁻¹ @ 500 GeV 3 years
 - 1000 fb⁻¹ @ 1000 GeV 3 years

ILC roadmap Snowmass study

- Baseline: 250 fb⁻¹ @ 250 GeV 3 years 500 fb⁻¹ @ 500 GeV 3 years
 - 1000 fb⁻¹ @ 1000 GeV 3 years
- Followed by luminosity upgrade:
- 'HL-ILC': +900 fb⁻¹ @ 250 GeV +3 years +1100 fb⁻¹ @ 500 GeV +3 years +1500 fb⁻¹ @ 1000 GeV +3 years

ILC baseline precisions

\sqrt{s} and \mathcal{L}	250 fb ^{−1} a	rt 250 GeV	5	0 0 fb-1 а	at 500 G	ieV	1 a	b ⁻¹ at 1	TeV
(P_{e^-}, P_{e^+})	(-0.8,	+0.3)		<mark>(-0.8</mark> ,	+0.3)		((-0.8,+0.2)	
	Zh	$\nu \bar{\nu} h$	Zh	$\nu \bar{\nu} h$	$t\bar{t}h$	Zhh	$\nu \bar{\nu} h$	$t\bar{t}h$	$\nu \bar{\nu} hh$
$\Delta \sigma / \sigma$	2.6%	-	3.0	-		42.7%			26.3%
BR(invis.)	< 0.9 %	-	-	-	-				
mode				$\Delta(\sigma \cdot B)$	$R)/(\sigma \cdot .$	BR)			
$h \rightarrow b\bar{b}$	1.2%	10.5%	1.8%	0.7%	28%		0.5%	6.0%	
$h \rightarrow c\bar{c}$	8.3%	-	13%	6.2%			3.1%		
$h \rightarrow gg$	7.0%	-	11%	4.1%			2.3%		
$h \rightarrow WW^*$	6.4%	-	9.2%	2.4%			1.6%		
$h \rightarrow \tau^+ \tau^-$	4.2%	-	5.4%	9.0%			3.1%		
$h \rightarrow ZZ^*$	19%	-	25%	8.2%			4.1%		
$h \rightarrow \gamma \gamma$	34%	-	34%	23%			8.5%		
$h ightarrow \mu^+ \mu^-$	100%	-	-	-			31%		

Higgs coupling map

ILC baseline + HL-ILC precisions

\sqrt{s} and \mathcal{L}	1150fb^{-1}	at 250 GeV	16	600fb^{-1}	at 500 (GeV	2.5 ;	ab ⁻¹ at :	1 TeV
$(P_{e^{-}}, P_{e^{+}})$	(-0.8	+0.3)		(-0.8,	+0.3)		(-0.8,+0.	2)
	Zh	vvh	Zh	$\nu \bar{\nu} h$	tth	Zhh	vīvh	tth	$\nu \bar{\nu} hh$
$\Delta \sigma / \sigma$	1.2%	-	1.7	-		23.7%			16.7%
BR(invis.)	< 0.4 %	-	-	-			-		
mode			4	$\Delta(\sigma \cdot BF)$	$l)/(\sigma \cdot L)$	3R)			
$h \rightarrow b\bar{b}$	0.6%	4.9%	1.0%	0.4%	16%		0.3%	3.8%	
$h \rightarrow c\bar{c}$	3.9%	-	7.2%	3.5%			2.0%		
$h \rightarrow gg$	3.3%	-	6.0%	2.3%			1.4%		
$h \rightarrow WW^*$	3.0%	-	5.1%	1.3%			1.0%		
$h ightarrow au^+ au^-$	2.0%	-	3.0%	5.0%			2.0%		
$h \rightarrow ZZ^*$	8.8%	-	14%	4.6%			2.6%		
$h \rightarrow \gamma \gamma$	16%	-	19%	13%			5.4%		
$h \rightarrow \mu^+ \mu^-$	46.6%	-	-	-			20%		

Model-independent couplings extraction

- **33 input measurements**
- 11-parameter fit

$$\chi^2 = \sum_{i=1}^{i=33} (\frac{Y_i - Y'_i}{\Delta Y_i})^2 \,,$$

$$Y_i^{'} = F_i \cdot \frac{g_{HZZ}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$$
, or $Y_i^{'} = F_i \cdot \frac{g_{HWW}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$, or $Y_i^{'} = F_i \cdot \frac{g_{Htt}^2 g_{Hb\bar{b}}^2}{\Gamma_0}$

$$F_i = S_i G_i \quad \text{where } S_i = \left(\frac{\sigma_{ZH}}{g_Z^2}\right), \ \left(\frac{\sigma_{\nu\bar{\nu}H}}{g_W^2}\right), \text{ or } \left(\frac{\sigma_{t\bar{t}H}}{g_t^2}\right), \text{ and } G_i = \left(\frac{\Gamma_i}{g_i^2}\right).$$

Model-independent couplings

	ILC(250)	ILC(500)	ILC(1000)	ILC(LumUp)
\sqrt{s} (GeV)	250	250+500	250 + 500 + 1000	250+500+1000
\dot{L} (fb ⁻¹)	250	250 + 500	250+500+1000	1150 + 1600 + 2500
$\gamma\gamma$	18 %	8.4 %	4.0 %	2.4 %
<u>gg</u>	6.4 %	2.3 %	1.6 %	0.9 %
WW	4.8 %	1.1 %	1.1 %	0.6 %
ZZ	1.3 %	1.0 %	1.0 %	0.5 %
$t\bar{t}$	_	14 %	3.1 %	1.9 %
$b\overline{b}$	5.3 %	1.6 %	1.3 %	0.7 %
$\tau + \tau -$	5.7 %	2.3 %	1.6 %	0.9 %
$c\bar{c}$	6.8 %	2.8 %	1.8 %	1.0 %
$\mu^+\mu^-$	91%	91%	16 %	10 %
$\Gamma_T(h)$	12 %	4.9 %	4.5 %	2.3 %
hhh	-	83 %	21 %	13 %
BR(invis.)	< 0.9 %	< 0.9 %	< 0.9 %	< 0.4 %

Model-dependent couplings extraction

7 Parameter HXSWG Benchmark *					
	LHC		ILC(LumUp) 250+500+1000	\sqrt{s} (GeV)	
Mode	300 fb^{-1}	3000 fb^{-1}	250+500+1000	1150 + 1600 + 2500	$L (fb^{-1})$
$\gamma\gamma$	(5-7)%	(2-5)%	3.8 %	2.3 %	
gg	(6-8)%	(3-5)%	1.1 %	0.7 %	
WW	(4-5)%	(2-3)%	0.3 %	0.2 %	
ZZ	(4-5)%	(2-3)%	0.5 %	0.3 %	
$tar{t}$	(14 - 15)%	(7 - 10)%	1.3 %	0.9 %	
$bar{b}$	(10 - 13)%	(4-7)%	0.6 %	0.4 %	
$\tau^+ \tau^-$	(6-8)%	(2-5)%	1.3 %	0.7 %	

~10 x LHC sensitivity

* Assume
$$\kappa_c = \kappa_t$$
 & $\Gamma_{tot} = \sum_{\text{SM decays i}} \Gamma_i^{SM} \kappa_i^2$

Non-Standard Higgs couplings

For M = 1 TeV, deviations of couplings from SM:

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

Deviations in the range $1\% \rightarrow 10\%$

→ measurements must be significantly more precise to resolve such deviations

Specific beyond-SM examples

Composite Higgs (MCHM5)

Zivkovic et al

Simulated ILC measurements

The accelerators

International Linear Collider (ILC)

Beam parameters

	ILC (500 GeV)	
Electrons/bunch	2	10**10
Bunches/train	1312	
Train repetition rate	5	Hz
Bunch separation	554	ns
Train length	730	us
Horizontal IP beam size	474	nm
Vertical IP beam size	6	nm
Longitudinal IP beam size	300	um
Luminosity	1.8	10**34

SCRF Linac Technology

- solid niobium
- standing wave
- 9 cells
- operated at 2K (Lqd. He)
- 35 MV/m
- $Q_0 \ge 10^{10}$

1.3 GHz Nb 9-cell Cavities	16,024
Cryomodules	1,855
SC quadrupole package	673
10 MW MB Klystrons & modulators	436 / 471

* site dependent

Approximately 20 years of R&D Worldwide \rightarrow Mature technology

European XFEL @ DESY

The ultimate 'integrated systems test' for ILC. Commissioning with beam begins 2016 Largest deployment of SCRF technology

100 cryomodules

- 800 cavities
- 17.5 GeV

European XFEL @ DESY

Similar technology for LCLS2 at SLAC

The ultimate 'integrated systems test' for ILC. Commissioning with beam begins 2016 Largest deployment of SCRF technology

> 100 cryomodules

- 800 cavities
- 17.5 GeV

Industrial production - XFEL

One vendor following ILC baseline recipe

ILC Detectors

ILC project status

- 2005-12 ILC run by Global Design Effort (Barish)
- C. 500 accelerator scientists worldwide involved
- A Reference Design Report (RDR) was completed in 2007 including a first cost estimate
- 2008-12 engineering design phase major focus on risk minimisation + cost reduction
- Technical Design document released end 2012
 revised cost estimate + project implementation plan
ILC Technical Design Report

THE INTERNATIONAL LINEAR COLLIDER

TECHNICAL DESIGN REPORT | VOLUME 3.1: ACCELERATOR R&D

Part I: ILC R&D IN THE TECHNICAL DESIGN PHASE

> Part II: THE ILC BASELINE DESIGN

> > Editors:

Phil Burrows, John Carwardine, Eckhard Elsen, Brian Foster, Mike Harrison, Hitoshi Hayano, Nan Phinney, Marc Ross, Nobu Toge, Nick Walker, Akira Yamamoto, Kaoru Yokoya

> Technical Editors: Maura BARONE, Benno LIST

ILC project status

- 2005-12 ILC run by Global Design Effort (Barish)
- C. 500 accelerator scientists worldwide involved
- A Reference Design Report (RDR) was completed in 2007 including a first cost estimate
- 2008-12 engineering design phase
 major focus on risk minimisation + cost reduction
- Technical Design document released end 2012
 revised cost estimate + project implementation plan
- Lyn Evans assumed project leadership 2013
 Japan preparing implementation of ILC at Kitakami

Yamauchi

ILC Plan in Japan

- Japanese HEP community proposes to host ILC based on the "staging scenario" to the Japanese Government.
 - ILC starts as a 250GeV Higgs factory, and will evolve to a 500GeV machine.
 - Technical extendability to 1TeV is to be preserved.

ILC Candidate Location: Kitakami Area

Kitakami Site

Kitakami Site: Interaction Point

Kitakami Site: Interaction Point

National news

✓ f ≅ ⋒ 17*C P/CLOUDY TOKYO (8 p.m.) MARKETS 121.4 ¥/\$ (5 p.m.)	The Japan Times NEWS				SIGN UP LOGIN » EMAIL UPDATES HOME DELIVERY TODAY'S STORIES		
NEWS	OPINION	LIFE	COMMUNITY	CULTURE	SPORTS	CITY GUIDE	Q
	NATIO	DNAL ASIA PACIFIC	BUSINESS WORLD	REFERENCE COLUMNS	MULTIMEDIA		
		Rest of the second second			The Japan T シャパンタイ 特別な日に	imes が誕生日新聞 ななたた初な人へ 聞る Click here	
					THE JAP THE JAPAN T Japanese Language Special feature on Japa language schools that at helping students ent employment or univers graduate school.	AN TIMES ST IMES ON SUNDAY e Schools are successful ter ity and	
Hopes are running high accelerator that could u REFERENCE FYI INTERNATIONAL LINEA	that the Tohoku region incover some of the mos	will host the Internation t fundamental question	aal Linear Collider, a cuttin is about the universe. © R	g-edge particle EY. HORI	100Ne WHAT'S	IN ASIA 2014 EXT-Era CEOS FRENDING NOW Int against the tide to save	2
Tohoku pins	rebound hop	es to atom sm	asher		whales and dolphins		

Yokohama: What are you most proud or fond of

Local enthusiasm

Local enthusiasm

Kitakami Site: road to port

High-level politics

meeting of Lyn Evans and Prime Minister Abe, March 27, 2013

CLIC physics context

Energy-frontier capability for electron-positron collisions,

> for precision exploration of potential new physics that may emerge from LHC

CLIC physics context

Energy-frontier capability for electron-positron collisions,

> for precision exploration of potential new physics that may emerge from LHC

New CLIC layout 3 TeV

CLIC Collaborations

31 Countries – over 70 Institutes

SLAC-R-985 KEK Report 2012 PSI-12-01 JAI-2012-001 CERN-2012-007 12 October 2012 ANL-HEP-TR-12-01 CERN-2012-003 DESY 12-008 KEK Report 2011-7 14 February 2012

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

A MULTI-TEV LINEAR COLLIDER BASED ON CLIC TECHNOLOGY

CLIC CONCEPTUAL DESIGN REPORT

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PHYSICS AND DETECTORS AT CLIC

CLIC CONCEPTUAL DESIGN REPORT

CDR tunnel layout

Rebaselining: first stage energy ~ 380 GeV

Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50

New CLIC layout 380 GeV

Current rebaselined parameters

Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$\tau_{\rm pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	_	660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	950/30	_	_
Estimated power consumption	P _{wall}	MW	252	364	589

Legend

CERN existing LHC Potential underground siting : CLIC 380 Gev CLIC 1.5 TeV

CLIC 1.5 Te CLIC 3 TeV

Jura Mountains

œ

Geneva

012011 GeoE

Lake Geneva

ezena Googl

Current CLIC run model

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int} (fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

Rebaselining document

CERN-2016-XXX XX XXXX 2016

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN** EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top measurements. Subsequent stages will focus on measurements of rare Higgs processes, as wells as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.

'yellow report' in preparation

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

CLIC detector concept

ILC concepts adapted to a single detector for CLIC:

- Highly-granular, deep calorimeter
- 4T solenoid
- Low-mass Si tracking system
- Precision vertexing close to IP
- 10ns time-stamping

CLIC accelerating structure

Outside

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

HOM damping waveguide

Inside

25 cm CLIC Project Review, 1 March 2016 6 mm diameter beam aperture

Recently installed 2-beam acceleration module in CTF3 (according to latest CLIC design)

DV CO

A

main beam

drive beam

6.10

0

- X-band technology appears interesting for compact, relatively low cost FELs new or extensions
 - Logical step after S-band and C-band
 - Example similar to SwissFEL: E=6 GeV, Ne=0.25 nC, σ_z =8µm
- Use of X-band in other projects will support industrialisation
 - They will be klystron-based, additional synergy with klystronbased first energy stage
- Collaborating on use of X-band in FELs
 - Australian Light Source, Turkish Accelerator Centre, Elettra, SINAP, Cockcroft Institute, TU Athens, U. Oslo, Uppsala University, CERN
- Share common work between partners
 - Cost model and optimisation
 - Beam dynamics, e.g. beam-based alignment
 - Accelerator systems, e.g. alignment, instrumentation...
 - Define common standard solutions
 - Common RF component design, -> industry standard
 - High repetition rate klystrons (200->400 Hz now into teststands)

Important collaboration for X-band technology

CLIC roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

The Future?

- YOU are the future!
- There is a powerful physics case for an e+e- linear collider to explore the known Higgs and top-quark sectors ... and search for new physics, directly and indirectly, at the energy frontier
- ILC technology is mature, industrialised, and the project is ready for a construction start – awaiting a decision by Japanese Government
- CLIC is promising technology to provide direct reach for new physics up to multi-TeV energy scales
- Energy-staged CLIC design to be presented to European PP Strategy update in 2019/20
- We hope that future results from 13 TeV LHC will guide us ...