Future Circular Colliders (FCC)

A long term vision for particle physics

By request from the organizers, cover, for FCC-ee:
Distinctive features, prospects, and challenges
Physics, Experiments, Accelerator
in 30 minutes.

AC Summer Institute 2016 19 August 2016

A selection of ...

Distinctive features

Circular

A few quotes and facts

- "An e⁺e⁻ storage ring in the range of a few hundred ٠ GeV in the centre-of-mass can be built with present technologies [...] would seem to be [...] the most useful project on the horizon"
 - Original LEP proposal (1976): 90 km for 400 GeV
- Main obstacle to larger \sqrt{s} is synchrotron radiation ٠

"Up to a centre-of-mass energy of 350 GeV at least, a circular collider with superconducting accelerating cavities is the cheapest option"

Herwig Schopper (Former CERN DG)

(Former CERN DG)

H. Schopper, private communication (2014)

Energy upgrade

- International FCC collaboration (CERN as host lab) to study
 - pp collider , 100 TeV (FCC-hh)
 - Ultimate goal, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as a possible first step, with √s from ~90 to ~400 GeV
- p-e collider (FCC-eh) option

- **The FCC-ee may serve as a spring board for the 100 TeV pp collider, bringing:**
 - A large tunnel, most of the infrastructure, cryogenics, time, ...
 - Additional physics motivations + performance goals for FCC-hh
 - The largest energy upgrade for e⁺e⁻ projects on the market

M. Benedikt F. Zimmermann

Energy upgrade (cont'd)

• A very recent idea (2014) for muon colliders

P. Raimondi

- Intense e⁺ beam with E = 45 GeV
- Non destructive target for $e^+e^- \rightarrow \mu^+\mu^-$
- Keep the e⁺ beam in a ring
- Production at threshold ($\sqrt{s} \sim 2 m_{\mu}$)
 - Quasi monochromatic muons, almost no need for cooling
- Fast acceleration and injection into moderately-sized circular ring(s)
 - See lecture from M. Palmer on Monday afternoon
- May be the best (only?) way to reach $\sqrt{s} > 3$ TeV with leptons
 - With the required luminosity

Patrick Janot

Unique synergy with FCC-ee

50 years of experience

• FCC-ee exploits experience from past circular colliders

F. Zimmermann

Combines successful ingredients

• Towards extremely high luminosities at high centre-of-mass energies

Extremely high luminosities

- **In the energy range from the Z pole to the top-pair threshold**
 - (So-far) conservative baseline, with functioning optics and 2 IPs
 - Room for improvement with smaller β * and 4 IPs

Parameters

J. Wenninger et al. FCC-ACC-SPC-003

parameter		LEP2				
physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]	1W] 100					22
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5
rms cm <i>E</i> spread SR [%]	0.03	0.03	0.05	0.07	0.10	0.11
rms cm <i>E</i> spread SR+BS [%]	0.15	0.06	0.07	0.08	0.12	0.11

Precise energy calibration with self polarization

Reminder: Measurement of the beam energy at LEP

• Ultra-precise measurement unique to circular colliders

Patrick Janot

Precise energy calibration with self polarization

- **The spin precesses around B with a frequency proportional to B (Larmor precession)**
 - + Hence, the number of revolutions v_s for each LEP turn is proportional to BL (or $\int Bdl$)

- LEP was colliding 4 bunches of e⁺ and e[−]
 - Specific calibration runs were needed: extrapolation error ~ 2.2 MeV
- FCC-ee will have 10,000's of bunches.
 - Use ~100 "single" bunches to measure E_{BEAM} with resonant depolarization
 - Each measurement gives 100 keV precision, with no extrapolation uncertainty

Experimental conditions

- **•** A few specificities with respect to linear colliders
 - Two to four interaction points
 - Bunch crossing time from 2.5 7.5 ns (Z) up to 4 μ s (top)
 - No pile-up interactions (< 0.001 / bunch crossing)
 - Beamstrahlung is mild for experiments

E. Perez							
	FCCZ	FCCZ, c.w	CEPC	FCC ZH	ILC500		
Npairs / BX	200	9900	3260	640	165000		
Leading process	96% LL	65% LL	80% LL	90% LL	60% BH		
Epairs / BX (GeV)	86	2940	2600	570	400000		
Leading process	100% LL	100% LL	98% LL	96% LL	70% BH		

- Much smaller background in the detectors
- Better centre-of-mass energy definition
 - ➡ Beam energy spread < 0.1% at all √s</p>
- High luminosity reached with 30 mrad crossing angle and strong focusing ("crab-waist")
 - Last focusing quadrupole "inside" the detector : L* ~ 2 m
 - Experiment magnetic field needs to be compensated / shielded
 - Shielding & compensating solenoids up to 1m from the interaction point

European Strategy statement

• In 2013, the European Strategy group said

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

• The FCC-ee complies best with this statement

- Unprecedented and largest luminosities from 90 to 400 GeV
 - To study the properties of the Z^(*), W^(*), H, and top particles
 - With close-to-ideal experimental conditions
- Unrivaled precision for the measurement of the beam energy
 - See in a few slides for the motivation
- Energy upgrade (FCC-hh) up to 100 TeV
 - Required by the negative results from LHC searches
 - No new physics below 1 TeV (so far)

 $(\ensuremath{^*})$ Linear colliders don't have a design for these energies

A selection of ...

Challenges

Foreword

- **•** The FCC-ee is designed to be the ultimate Z, W, H, and top factories
 - It is a project in its infancy: less than three years old
 - Lots of progress were made in the past two years
 - Technology is ready on paper
 - This machine has still many technological challenges to solve
 - A high-power (200 MW), high-gradient (10 MV/m), 2 km-long, RF system
 - Loads of synchrotron radiation (100 MW) to deal with
 - A booster (for top up injection), and a double ring for e⁺ and e⁻
 - An optics with very low β^* , and large momentum acceptance
 - An intense positron source
 - Transverse polarization for beam energy measurement
 - Up to four experiments to serve
 - ... and much more
 - It is supported by 50 years of experience and progress with e⁺e⁻ circular machines
 - Most of the above challenges are being addressed at SuperKEKB (starting 2015)
 - ➡ FCC-ee will have to build on this experience

RF system

Very broad range of operation parameters "Ampere-class", machines

ΔE_{SR} from 34 MeV to 7.55 GeV

- Accelerating gradient from 0.2 to 10 GV
- Total current from 6.6 mA to 1.45 A

	V _{total} GV	n _{bunches}	I _{beam} mA	ΔE/turn GeV
FCC-hh	0.032		500	
Z	0.4/0.2	30000/90000	1450	0.034
W	0.8	5162	152	0.33
Н	5.5	770	30	1.67
t	10	78	6.6	7.55

O. Brunner, A. Butterworth, R. Calaga

No well-adapted single RF system solution

"high gradient" machines

Start with 400 MHz single-cell Nb/Cu cavities @ 4.5K for Z and WW

RF power source efficiency ...

- The RF system needs to compensate for 100 MW SR losses
 - Corresponds to 200 MW with 50% efficient RF power sources (klystrons)
 - Reminder: Klystron efficiency was ~ 55% at LEP2
 - Recent breakthrough (2014) in klystron theory
 - Three methods applied together promise more than 90% efficiency
 - "Congregated bunch"
 V.A. Kochetova (1981)
 - **Bunch core oscillations**" A. Yu. Baikov et al. (2014)
 - ► **"BAC"** I. A. Guzilov et al. (2013)
 - Just started an international collaboration "HEIKA"
 - CERN, ESS, SLAC, CEA, MFUA, Lancaster U., Thales, L₃, CPI, VDBT
 - Now designing, building, and testing prototypes
 - Simulation and first hardware tests extremely encouraging
- Projected FCC-ee total power from 275 MW (Z) to 364 MW (top)
 - ... to be compared to 237 MW used by CERN in 1998
 - The total RF power accounts for half of it (with 70% efficiency)

... and FCC-ee energy consumption

Compared to recent CERN history

S. Claudet - CERN Procurement Strategy

3rd Energy Workshop 29-30 October 2015

Synchrotron radiation and MDI optimization

Detector design

- "To study properties with unprecedented precision"
 - Challenging, but ILC and CLIC detector characteristics are adequate
 - The control of systematic uncertainties will be of paramount importance
 - Possible at the FCC-ee with regular high-statistics runs at the Z pole

Started to adapt CLIC detector design to FCC-ee

• Started to work also on specific FCC-ee detector design: first conclusions within a year

Detector design (cont'd)

Trying to squeeze in the luminosity calorimeter

Usually measure luminosity with well-known low-angle QED process e⁺e[−] → e⁺e[−]

Physics Prospects

Lumi / year and typical running scenario

Assumptions

- 160 days of physics / year (LEP, LHC)
- Beam availability 65% with top-up injection (PEP2, KEKB)
- Conservative baseline with 2 experiments / Target with 4 experiments
- Integrated luminosities and number of events

Mode	Lumi / year	# years	# events	Remark
Z (88-94)	40-80 ab-1	3-5	Up to 10 ¹³ Z	>10 ⁵ LEP
WW (161)	4-15 ab ⁻¹	1-2	Up to 10 ⁸ WW	~10 ⁴ LEP
HZ (240)	1-3.5 ab-1	3-5	1-2 × 10 ⁶ HZ	~10 ILC
tt (350-370)	0.25-1 ab-1	3-5	1-2 × 10 ⁶ tt	~ ILC / CLIC
H (125)	2 ab-1	?	500 H / year	Preliminary (*)

(*) Work in progress, needs monochromatization, \sqrt{s} spread ~ 6 MeV possible

- Predicting accuracies with 300 times smaller statistical precision than at LEP is difficult
 - Conservatively used LEP experience for systematic uncertainties
 - ➡ This is just the start.

Precision electroweak measurements

Patrick Janot

SLAC Summer Institute 2016 19 August 2016

Combination of all precision EW measurements

• New physics discovery potential ... or constraints on new physics ? arXiv:1308.6173

Theory uncertainties

- The predictions of m_{top} , m_{W_1} , m_{H_2} , $\sin^2\theta_W$ have theory uncertainties (in SM)
 - Which may in turn cancel the sensitivity to new physics
- For m_W and $sin^2\theta_W$ today, these uncertainties are as follows

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{had}} \\ \pm 0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{\text{theo}} \\ = 80.359 \pm 0.011_{\text{tot}}$$

$$\begin{aligned} \sin^2 \theta_{\text{eff}}^{\ell} &= 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ &\pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}} \end{aligned}$$
$$= 0.23150 \pm 0.00010_{\text{tot}}$$

- Parametric uncertainties and missing higher orders in theoretical calculations:
 - Are of the same order
 - Smaller than experimental uncertainties

S. Heinemeyer

Theory uncertainties

- **D** Most of the parametric uncertainties will reduce adequately at FCC-ee
 - New generation of theoretical calculations is necessary to gain a factor 10 in precision
 - To match the precision of the direct FCC-ee measurements

$$\begin{array}{rcl} M_W &=& 80.3593 \pm 0.0001 & \pm 0.0001 & M_Z \pm 0.0003 & \Delta \alpha_{had} \\ \mbox{Exp: 0.0005} & & \pm 0.0002 & \alpha_S \pm 0.0000 & M_H \pm 0.0040_{theo} \\ &=& 80.359 \pm 0.005 & tot \end{array}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000001 \quad m_t \pm 0.000001 \quad M_Z \pm 0.000008 \quad \Delta \alpha_{\text{had}}$$

$$\text{Exp: 0.000006} \qquad \pm 0.000001 \quad \alpha_S \pm 0.000000 \quad M_H \pm 0.000047_{\text{theo}}$$

$$= 0.23150 \pm 0.00006 \quad \text{tot}$$

- Will require calculations up to three or four loops to gain an order of magnitude
 - Might need a new paradigm in the actual computing methods
 - ➡ Lot of interesting work for future generations of theorists

Generic constraints on new physics

• Higher-dimensional operators as relic of new physics ?

Specific sensitivity to new physics

• For example, composite Higgs models would modify top EW couplings

Precision Higgs physics

• Model-independent precision measurements of mass, couplings, width, inv. width

Higgs measurements: Summary

• From M. Klute, LCWS'15

Uncertainties	HL-LHC*	μ-	CLIC	ILC**	CEPC	FCC-ee	
m _H [MeV]	40	0.06	40	30	5.5	8	
Г _Н [MeV]	-	0.17	0.16	0.16	0.12	0.04	
9 нzz [%]	2.0	-	1.0	0.6	0.25	0.15	
9 нww [%]	2.0	2.2	1.0	0.8	1.2	0.2	
9 ньь [%]	4.0	2.3	1.0	1.5	1.3	0.4	= best potential
g нтт [%]	2.0	5	2.0	1.9	1.4	0.5	•
д нүү [%]	2.0	10	6.0	7.8	4.7	1.5	
9 нсс [%]	-	-	2.0	2.7	1.7	0.7	
д н _{gg} [%]	3.0	-	2.0	2.3	1.5	0.8	_
9 нtt [%]	4.0	-	4.5	18	-	13 ***	
<mark>д_{Нµµ} [%]</mark>	4.0	2.1	8.0	20	8.6	6.2	Synergy with
д ннн [%]	30	-	24	-	-	80 ***	

* Estimate for two HL-LHC experiments** ILC lumi upgrade improves precision by factor 2

For ~10y operation. Lots of "!,*,?" **Every number comes with her own story.**

*** Indirect

Sensitivity to new physics: Discovery potential

- **u** Higgs couplings are affected by new physics
 - + Example: Effect on κ_z and κ_b for 4D-Higgs Composite Models

- Generically, FCC-ee precision gives access to new physics coupled to the Higgs sector
 - Up to scales of ~ 10 TeV

Synergy with FCC-hh for Htt, HHH, Hµµ

- With 30 ab⁻¹ at FCC-hh (See lecture of L.T. Wang)
 - $10^9 \text{ gg} \rightarrow \text{ttH events}, 5 \times 10^7 \text{ gg} \rightarrow \text{HH events}, 5 \times 10^8 \text{ gg} \rightarrow \text{H} \rightarrow \mu\mu$
 - Statistical precision won't be much of a problem, even after selection
 - Systematic uncertainties will dominate, but can be drastically reduced with ratios
 - Normalize to the precise measurements made at the FCC-ee
 - Example: Infer Htt coupling from the measurement of $\sigma(ttH) / \sigma(ttZ)$
 - Very similar production, gg dominant
 - Most theory uncertainty cancel
 - 1% precision possible on σ (ttH) / σ (ttZ)
 - σ(ttZ) and Higgs BR's from FCC-ee

• Achievable precisions

Collider	HL-LHC	LC 500 GeV	LC 1-3TeV	FCC-ee+hh
9 _{Htt}	4%	7-14%	2-4%	<1%
9 _{ннн}	50%	30-80%	10-15%	<5%
	4%	10-20%	8%	<1%

The combination of FCC-ee and FCC-hh will be "invincible"

Opportunities open with the huge FCC-ee luminosities

FCC-ee specific discovery potential

EXPLORE the 10-100 TeV energy scale with precision measurements

DISCOVER that SM does not fit

- Then extra weakly-coupled particles exist
- Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour conservation
 - Examples: $Z \rightarrow \tau \mu$ in 10¹³ Z decays; or t \rightarrow cZ, cH at \sqrt{s} = 240 or 350 GeV
 - Also a lot of flavour physics in 10¹² bb events
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right-handed neutrinos, dark photons, ...

Tentative timeline (based on LEP experience)

F. Zimmermann

- Dismantle the LHC and replace it with the FCC-hh injector
 - In parallel with the FCC-ee physics run (10 to 15 years)

Summary

- **•** FCC-ee successfully combines several concepts
 - Invented and demonstrated in the last 20 years (LEP2 + flavour factories)
- **•** FCC-ee offers extremely large luminosities
 - In the energy range from the Z to the top-pair threshold and beyond
 - Combined with precise beam energy calibration at the Z and the WW threshold
- **•** FCC-ee technology is ready
 - Ongoing R&D aims at further optimizing cost and energy efficiency
 - Optics fullfils all requirements, matched to the FCC-hh footprint
 - Baseline luminosity is predicted with confidence, more is coming
- **FCC-ee provides superb new physics discovery potential**
 - To potentially very high scales (up to ~100 TeV)
 - To potentially very small couplings (sterile neutrinos, dark matter, ...)
- **•** FCC-ee may serve as a great spring board for the FCC-hh 100 TeV collider
 - Bringing a large tunnel, infrastructure, cryogenics, time, physics & performance goals
- Physics absolutely needs an e⁺e⁻ collider at the EW scale
 - FCC-ee + hh is a most powerful combination for the Energy Frontier