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� Feynman rules for perturbative QCD follow from Lagrangian

L = −1

4
FA
αβF

αβ
A +

∑

flavours

q̄a(i6D −m)abqb + Lgauge−fixing

FA
αβ is field strength tensor for spin-1 gluon field AA

α ,

FA
αβ = ∂αAA

β − ∂βAA
α − gfABCAB

αAC
β

Capital indices A,B,C run over 8 colour degrees of freedom of the gluon field. Third

‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet and quartic gluon

self-interactions and ultimately to asymptotic freedom.

� QCD coupling strength is αS ≡ g2/4π. Numbers fABC (A,B,C = 1, ..., 8) are structure

constants of the SU(3) colour group. Quark fields qa (a = 1, 2, 3) are in triplet colour

representation. D is covariant derivative:

(Dα)ab = ∂αδab + ig
(

tCAC
α

)

ab

(Dα)AB = ∂αδAB + ig(TCAC
α )AB
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� t and T are matrices in the fundamental and adjoint representations of SU(3), respectively:

tA =
1

2
λA,

[

tA, tB
]

= ifABCtC ,
[

TA, TB
]

= ifABCTC

where (TA)BC = −ifABC . We use the metric gαβ = diag(1,–1,–1,–1) and set

~ = c = 1. 6D is symbolic notation for γαDα. Normalisation of the t matrices is

Tr tAtB = TR δAB , TR =
1

2
.

� Colour matrices obey the relations:

∑

A

tAabt
A
bc = CF δac , CF =

N2 − 1

2N

Tr TCTD =
∑

A,B

fABCfABD = CA δCD , CA = N

Thus CF = 4
3

and CA = 3 for SU(3).
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� QCD Lagrangian is invariant under local gauge transformations. That is, one can redefine quark

fields independently at every point in space-time,

qa(x) → q′a(x) = exp(it · θ(x))abqb(x) ≡ Ω(x)abqb(x)

without changing physical content.

� Covariant derivative is so called because it transforms in same way as field itself:

Dαq(x) → D′
αq

′(x) ≡ Ω(x)Dαq(x) .

(omitting the colour labels of quark fields from now on). Use this to derive transformation property

of gluon field A

D′
αq

′(x) =
(

∂α + igt · A′
α

)

Ω(x)q(x)

≡ (∂αΩ(x))q(x) + Ω(x)∂αq(x) + igt · A′
αΩ(x)q(x)

where t · Aα ≡
∑

A t
AAA

α . Hence

t · A′
α = Ω(x)t · AαΩ

−1(x) +
i

g

(

∂αΩ(x)
)

Ω−1(x) .
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� Transformation property of gluon field strength Fαβ is

t · Fαβ(x) → t · F ′
αβ(x) = Ω(x)Fαβ(x)Ω

−1(x) .

Contrast this with gauge-invariance of QED field strength. QCD field strength is not gauge

invariant because of self-interaction of gluons. Carriers of the colour force are themselves

coloured, unlike the electrically neutral photon.

� Note there is no gauge-invariant way of including a gluon mass. A term such as

m2AαAα

is not gauge invariant. This is similar to QED result for mass of the photon. On the other hand

quark mass term is gauge invariant, under SU(3) gauge transformations.
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� Use free piece of QCD Lagrangian to obtain

inverse quark and gluon propagators.

� Quark propagator in momentum space

obtained by setting ∂α = −ipα for an

incoming field.

� The iε prescription for pole of propagator is

determined by causality, as in QED.
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� Gluon propagator impossible to define without a choice of gauge. The choice

Lgauge−fixing = − 1

2 λ

(

∂αAA
α

)2

defines covariant gauges with gauge parameter λ. Inverse gluon propagator is then

Γ
(2)
{AB, αβ}

(p) = iδAB

[

p2gαβ − (1− 1

λ
)pαpβ

]

.

(Without gauge-fixing term this function would have no inverse.) Resulting propagator is in the

table. λ = 1 (0) is Feynman (Landau) gauge.

� Gauge fixing explicitly breaks gauge invariance. However, in the end physical results will be

independent of gauge. For convenience, we usually use Feynman gauge.

� In non-Abelian theories like QCD, covariant gauge-fixing term must be supplemented by a ghost

term which we do not discuss here. Ghost field, shown by dashed lines in the above table, cancels

unphysical degrees of freedom of gluon which would otherwise propagate in covariant gauges.
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� Propagators determined from −S, interactions from S.

� Consider a theory which contains only a complex scalar field φ and an action which contains only

bilinear terms, S = φ∗ (K +K′)φ.

� MOE: both K and K′ are included in the free Lagrangian, S0 = φ∗ (K +K′)φ. Using the

above rule the propagator ∆ for the φ field is given by

∆ =
−1

K +K′
.

� JOE: K is regarded as the free Lagrangian, S0 = φ∗Kφ, andK′ as the interaction

Lagrangian, SI = φ∗K′φ. Now SI is included to all orders in perturbation theory by inserting

the interaction term an infinite number of times:

∆ =
−1

K
+

(−1

K

)

K′

(−1

K

)

+

(−1

K

)

K′

(−1

K

)

K′

(−1

K

)

+ · · ·

=
−1

K +K′
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� An alternative choice of gauge fixing is provided by the axial gauges which are fixed in terms of

another vector which we denote by b

Lgauge−fixing = − 1

2 λ

(

bαAA
α

)2
,

The advantage of the axial class of gauge is that ghost fields are not required. However one pays for

this simplicity because the gluon propagator is more complicated. The inverse propagator is

Γ
(2)
{AB, αβ}

(p) = iδAB

[

p2gαβ − pαpβ +
1

λ
bαbβ

]

.

The inverse of this matrix gives the gauge boson propagator,

∆
(2)
{BC, βγ}

(p) =δBC
i

p2

[

−gβγ +
bβpγ + pβbγ

b · p
− (b2 + λp2)pβpγ

(b · p)2
]

.

Notice the new singularities at b · p = 0.
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� What are the properties of these gauges which make them interesting? Let us specialize to the

case λ = 0, b2 = 0, (light-cone gauge).

∆
(2)
{BC,βγ}

(p) = δBC
i

p2
dβγ(p, b)

where

dβγ = −gβγ +
bβpγ + pβbγ

b · p
.

In the limit p2 → 0 we find that

bβdβγ(p, b) = 0, pβdβγ(p, b) = 0 .

Only two physical polarization states, orthogonal to b and p, propagate. For this reason these

classes of gauges are called physical gauges. In the p2 → 0 limit we may decompose the

numerator of the propagator into a sum over two polarizations:

dαβ =
∑

i

ε
(i)
α (p)ε

(i)
β (p) .

In addition to the constraint ε
(i)
β (p)pβ = 0, which is always true, in an axial gauge we have the

further constraint ε
(i)
β (p)bβ = 0.
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Lclassical = − 1
4

∑

i

W i µνW i
µν − 1

4
BµνBµν ,

� W i
µν and Bµν are the field strength tensors of the U(1) gauge field B and the SU(2) gauge

fields W i, (gW is SU(2) gauge coupling.)

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gW ǫijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ ,

� The Lagrangian evidently describes four massless vector bosons forming a singlet (B) and a

triplet (W 1,W 2,W 3) under weak isospin.

� The coupling of the gauge fields to fermionic matter fields is implemented using the covariant

derivative, which is

Dµ = δij∂
µ + igW (T ·Wµ)ij + iY δijg

′
WBµ

where g′W is the U(1) gauge coupling.
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� The matrices T are a representation of the SU(2) weak isospin algebra and the U(1) charge Y is

called the weak hypercharge. In order to specify the coupling to matter we therefore have to

choose the SU(2) representation, T , and the U(1) gauge charge, Y , for the matter fields.

[T i, T j ] = iǫijkT k, ǫ123 = 1 .

� DefiningW±
µ = (W 1

µ ∓ iW 2
µ)/

√
2 and T± = T 1 ± iT 2 we have

Wµ · T =W 3
µT3 +

1√
2
W+

µ T
+ +

1√
2
W−

µ T
−

where the matrices T±and T 3 satisfy the relations

[

T+, T−
]

= 2T 3,
[

T 3, T±
]

= ±T± .

T+ and T− are the weak isospin raising and lowering operators. For example, in the doublet

representation of SU(2) we have

T 3 =

( 1
2

0

0 − 1
2

)

, T+ =

(

0 1
0 0

)

, T− =

(

0 0
1 0

)

.

� Inserting a mass term for the W and B fields breaks gauge invariance.
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� Inserting a mass term for the W and B fields violates gauge invariance, but adopt a practical

approach and add one anyway

Lmass =
1

2

[

M2
∑

i

W i
µW

i µ +M2
0B

µBµ + 2M2
03W

3
µB

µ
]

� including the mass term, the terms bilinear in the boson fields become,

Lgauge = −1

2
W+

µνW
−µν +M2W+

µ W
−µ

− 1

4

[

W 3
µνW

3µν +BµνB
µν

− 1

2

[

M2W 3
µ(W

3)µ +M2
0BµB

µ + 2M2
03W

3
µB

µ
]

� First line defines 2 electrically charged spin one bosons with mass M =MW .

� The mass matrix for the electrically neutral fields is

1

2
(W 3

µ , Bµ)M
(

W 3µ

Bµ

)

,M =

(

M2 M2
03

M2
03 M2

0

)

� Matrix is not arbitrary, should have zero eigenvalue corresponding to the zero photon mass,

detM = 0 ⇒ MM0 =M2
03
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� We therefore redefine the electrically neutral fields by introducing rotated fieldsAµ and Zµ which

propagate independently, cW = cos θW , sW = sin θW
(

W 3
µ

Bµ

)

=

(

cW sW
−sW cW

)(

Zµ

Aµ

)

,

� Since the massless field must correspond to the massless eigenvalue, we have that

M2
A = (sW , cW )M

(

sW
cW

)

= M2s2W + 2MM0sW cW +M2
0 cW

= M2(sW +
M0

M
cW )2 = 0, → M0

M
= − sW

cW

� Correspondingly the mass of the Z is,

M2
Z = (cW ,−sW )M

(

cW
−sW

)

= M2c2W − 2MM0sW cW +M2
0 sW

= M2(cW − M0

M
sW )2

=
M2

c2W
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� 3 and 4 point vertices determined by the

non-abelian term in the field strength.
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L = ψ̄Ri(6∂ + ig′WYR 6B)ψR + ψ̄Li(6∂ + igW T · 6W + ig′WYL 6B)ψL .

� The U(1) charges of the left- and right-handed fermions, YL and YR, are chosen to satisfy the

relation Q = T 3 + Y ,

ψL = γL

(

νe
e−

)

, γL

(

νµ
µ−

)

, γL

(

ντ
τ−

)

� The right-handed fields are all SU(2) singlets:

ψR = γRe
−, γRµ

−, γRτ
− .

Fermion T 3
L YL T 3

R YR Qf

u c t + 1
2

+ 1
6

0 + 2
3

+ 2
3

d s b − 1
2

+ 1
6

0 − 1
3

− 1
3

νe νµ ντ + 1
2

− 1
2

- - 0

e− µ− τ− − 1
2

− 1
2

0 −1 −1
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The interaction Lagrangian can be expressed in terms of physical fields by substituting forB andW 3

L =
∑

f

ψ̄f

(

i6∂ −mf − gW
mfH

2MW

)

ψf − e
∑

f

Qf ψ̄fγµψf A
µ

− gW

cos θW

∑

f

ψ̄fγ
µ(RfγR + LfγL)ψfZµ

− gW√
2

∑

f

ψ̄f (T
+W+

µ γ
µγL + T−W−

µ γ
µγL)ψf

The couplings of the fermions to the Z boson are, (γR/L = 1
2
(1± γ5))

Rf = −Qf sin2 θW , Lf = T 3
f −Qf sin2 θW ,

whereQf is the charge of the fermion in units of the positron electric charge e. The values of e and

the weak SU(2) charge gW are related by

e = gW sin θW = g′W cos θW .
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� The propagators are shown in the Unitary

gauge.

� This gauge eliminates fields that do not

correspond to physical particles.

� In this gauge the propagators have worse

ultra-violet behaviour.

� The Weinberg angle fixes the coupling to

the Z boson.

� Measurements of the Weinberg angle fix

the ratio of the Z and W masses
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� Returning to QCD we examine the concept of a running coupling.

� Consider dimensionless physical observableR which depends on a single large energy scale,

Q≫ m wherem is any mass. Then we can set m→ 0 (assuming this limit exists), and

dimensional analysis suggests that R should be independent of Q.

� This is not true in quantum field theory. Calculation ofR as a perturbation series in the coupling

αS = g2/4π requires renormalization to remove ultraviolet divergences. This introduces a

second mass scale µ — point at which subtractions which remove divergences are performed.

Then R depends on the ratio Q/µ and is not constant. The renormalized coupling αS also

depends on µ.

� But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ. Since R is

dimensionless, it can only depend on Q2/µ2 and the renormalized coupling αS. Hence

µ2
d

dµ2
R

(

Q2

µ2
, αS

)

≡
[

µ2
∂

∂µ2
+ µ2

∂αS

∂µ2
∂

∂αS

]

R = 0 .
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� Introducing

τ = ln

(

Q2

µ2

)

, β(αS) = µ2
∂αS

∂µ2
,

we have
[

− ∂

∂τ
+ β(αS)

∂

∂αS

]

R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

∫ αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS

=
β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes from

running of αS(Q).
� We shall see QCD is asymptotically free: αS(Q) → 0 asQ → ∞. Thus for largeQ we can

safely use perturbation theory. Then knowledge ofR(1, αS) to fixed order allows us to predict

variation ofR with Q.
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� Running of the QCD coupling αS is

determined by the β function, which has

the expansion

β(αS) = −bα2
S (1 + b′αS) +O(α4

S )

b =
(11CA − 2Nf )

12π

b′ =
(17C2

A − 5CANf − 3CFNf )

2π(11CA − 2Nf )

whereNf is number of “active” light

flavours. Terms up to O(α7
S ) are now

known.

� if
dαS

dτ
= −bα2

S (1 + b′αS) and

αS → ᾱS(1 + cᾱS), it follows that
dᾱS

dτ
= −bᾱ2

S(1 + b′ᾱS) + O(ᾱ4
S)

� first two coefficients b, b′ are thus invariant

under scheme change.
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� Roughly speaking, quark loop diagram (a) contributes negative Nf term in b, while gluon loop (b)

gives positive CA contribution, which makes β function negative overall.

� QED β function is

βQED(α) =
1

3π
α2 + . . .

Thus b coefficients in QED and QCD have opposite signs.

� From earlier slides,

∂αS(Q)

∂τ
= −bα2

S (Q)
[

1 + b′αS(Q)
]

+O(α4
S ).

Neglecting b′ and higher coefficients gives

αS(Q) =
αS(µ)

1 + αS(µ)bτ
, τ = ln

(Q2

µ2

)

.



Asymptotic freedom (continued)

Lagrangian of QCD

Gauge invariance

Feynman rules

Alternative choice of gauge

Electroweak Lagrangian

Glashow model

Boson rules

Fermion couplings

Running coupling

Beta function

Asymptotic freedom

Lambda parameter

αS at mZ

Non-perturbative QCD

e
+

e
−

annihilation cross

section

QCD corrections

Shape distributions

Infrared divergences

Recap

Bibliography

23 / 43

� As Q becomes large, αS(Q) decreases to zero: this is asymptotic freedom. Notice that sign of b
is crucial. In QED, b < 0 and coupling increases at large Q.

� Including next coefficient b′ gives implicit equation for αS(Q):

bτ =
1

αS(Q)
− 1

αS(µ)
+ b′ ln

( αS(Q)

1 + b′αS(Q)

)

− b′ ln
( αS(µ)

1 + b′αS(µ)

)

� What type of terms does the solution of the renormalization group equation take into account in

the physical quantity R?

Assume that R has perturbative expansion

R = αS +O(α2
S )

Solution R(1, αS(Q)) can be re-expressed in terms of αS(µ):

R(1, αS(Q)) = αS(µ)
∞
∑

j=0

(−1)j(αS(µ)bτ)
j

= αS(µ)
[

1− αS(µ)bτ + α2
S (µ)(bτ)

2 + . . .
]

Thus there are logarithms ofQ2/µ2 which are automatically resummed by using the running

coupling. Neglected terms have fewer logarithms per power of αS.
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� Perturbative QCD tells us how αS(Q) varies with Q, but its absolute value has to be obtained

from experiment. Nowadays we usually choose as the fundamental parameter the value of the

coupling atQ =MZ , which is simply a convenient reference scale large enough to be in the

perturbative domain.

� Also useful to express αS(Q) directly in terms of a dimensionful parameter (constant of

integration) Λ:

ln
Q2

Λ2
= −

∫ ∞

αS(Q)

dx

β(x)
=

∫ ∞

αS(Q)

dx

bx2(1 + b′x+ . . .)
.

Then (if perturbation theory were the whole story) αS(Q) → ∞ as Q→ Λ. More generally, Λ
sets the scale at which αS(Q) becomes large.

� In leading order (LO) keep only first β-function b:

αS(Q) =
1

b ln(Q2/Λ2)
(LO).
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� In next-to-leading order (NLO) include also b′ :

1

αS(Q)
+ b′ ln

( b′αS(Q)

1 + b′αS(Q)

)

= b ln
(Q2

Λ2

)

.

This can be solved numerically, or we can obtain an approximate solution to second order in

1/ log(Q2/Λ2):

αS(Q) =
1

b ln(Q2/Λ2)

[

1− b′

b

ln ln(Q2/Λ2)

ln(Q2/Λ2)

]

(NLO).

This is Particle Data Group (PDG) definition.

� Note that Λ depends on number of active flavours Nf . ‘Active’ meansmq < Q. Thus for

5 < Q < 175 GeV we should use Nf = 5.
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� Data from PDG September, 2013

� Evidence that αS(Q) has a logarithmic fall-off with Q is persuasive.

� 1/αS as grows as ln(Q)
� 1/αS(MZ) = 8.44, c.f QED: 1/α(MZ) = 128.

� Radiative corrections, at least 15 times more important in QCD than QED.
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� Corresponding to asymptotic freedom at high momentum scales, we have infra-red slavery:

αS(Q) becomes large a low momenta, (long distances). Perturbation theory is not reliable for

large αS , so non-perturbative methods, (e.g. lattice) must be used.

� Important low momentum scale phenomena

� Confinement: partons (quarks and gluons) found only in colour singlet bound states, hadrons,

size ∼ 1 fm. If we try top separate them it becomes energetically favourable to create extra

partons from the vacuum.

� Hadronization: partons produced in short distance interactions re-organize themselves to

make the observed hadrons.
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� e+e− → µ+µ− is a fundamental electroweak processes.

� Same type of process, e+e− → qq̄, will produce hadrons. Cross sections are roughly

proportional.

� Since formation of hadrons is non-perturbative, how can PT give hadronic cross section? This can

be understood by visualizing event in space-time:

� e+ and e− collide to form γ or Z0 with virtual mass Q =
√
s. This fluctuates into qq̄, qq̄g,. . . ,

occupy space-time volume ∼ 1/Q. At largeQ, rate for this short-distance process given by PT.

� Subsequently, at much later time ∼ 1/Λ, produced quarks and gluons form hadrons. This

modifies outgoing state, but occurs too late to change original probability for event to happen.
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� Well below Z0, process e+e− → f f̄ is purely electromagnetic, with lowest-order (Born) cross

section (neglecting quark masses)

σ0 =
4πα2

3s
Q2

f

Thus (3 = N = number of possible qq̄ colours)

R ≡ σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
=

∑

q σ(e
+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

∑

q

Q2
q .

� On Z0 pole,
√
s =MZ , neglecting γ/Z interference

σ0 =
4πα2κ2

3Γ2
Z

(A2
e + V 2

e ) (A2
f + V 2

f )

where κ =
√
2GFM

2
Z/4πα = 1/ sin2(2θW ) ≃ 1.5. Hence

RZ =
Γ(Z → hadrons)

Γ(Z → µ+µ−)
=

∑

q Γ(Z → qq̄)

Γ(Z → µ+µ−)
=

3
∑

q(A
2
q + V 2

q )

A2
µ + V 2

µ



QCD corrections

Lagrangian of QCD

Gauge invariance

Feynman rules

Alternative choice of gauge

Electroweak Lagrangian

Glashow model

Boson rules

Fermion couplings

Running coupling

Beta function

Asymptotic freedom

Lambda parameter

αS at mZ

Non-perturbative QCD

e
+

e
−

annihilation cross

section

QCD corrections

Shape distributions

Infrared divergences

Recap

Bibliography

31 / 43

� Measured cross section is about 5% higher than σ0, due to QCD corrections. For massless

quarks, corrections to R and RZ are equal. To O(αS) we have:

� Real emission diagrams (b):

� Write 3-body phase-space integration as dΦ3 = [...]dα dβ dγ dx1 dx2
� α, β, γ are Euler angles of 3-parton plane

x1 = 2p1 · q/q2 = 2Eq/
√
s, x2 = 2p2 · q/q2 = 2Eq̄/

√
s.

� Applying Feynman rules and integrating over Euler angles:

σqq̄g = 3σ0CF
αS

2π

∫

dx1 dx2
x21 + x22

(1− x1)(1− x2)
.
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� Integration region: 0 ≤ x1, x2, x3 ≤ 1 where x3 = 2k · q/q2 = 2Eg/
√
s = 2− x1 − x2.

� Integral divergent at x1,2 = 1:

1− x1 =
1

2
x2x3(1− cos θqg), 1− x2 =

1

2
x1x3(1− cos θq̄g)

� Divergences: collinear when θqg → 0 or θq̄g → 0; soft whenEg → 0, i.e. x3 → 0.

Singularities are not physical – simply indicate breakdown of PT when energies and/or invariant

masses approach QCD scale Λ.
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� Collinear and/or soft regions do not in fact make important contribution to R. To see this, make

integrals finite using dimensional regularization,D = 4 + 2ǫ with ǫ < 0. Then

σqq̄g = 2σ0
αS

π
H(ǫ)

×
∫

dx1dx2

P (x1, x2)

[ (1− ǫ)(x21 + x22) + 2ǫ(1− x3)

[(1− x1)(1− x2)]
− 2ǫ

]

where H(ǫ) =
3(1− ǫ)(4π)2ǫ

(3− 2ǫ)Γ(2− 2ǫ)
= 1 +O(ǫ) .

and P (x1, x2) = [(1− x1)(1− x2)(1− x3)
]ǫ

Hence

σqq̄g = 2σ0
αS

π
H(ǫ)

[

2

ǫ2
+

3

ǫ
+

19

2
− π2 +O(ǫ)

]

.
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� Soft and collinear singularities are regulated, appearing instead as poles at D = 4.

� Virtual gluon contributions (a): using dimensional regularization again

σqq̄ = 3σ0

{

1 +
2αS

3π
H(ǫ)

[

− 2

ǫ2
− 3

ǫ
− 8 + π2 +O(ǫ)

]}

.

� Adding real and virtual contributions, poles cancel and result is finite as ǫ→ 0:

R = 3
∑

q

Q2
q

{

1 +
αS

π
+O(α2

S )
}

.

� ThusR is an infrared safe quantity.
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� Coupling αS evaluated at renormalization scale µ. UV divergences in R cancel to O(αS), so

coefficient of αS independent of µ. At O(α2
S ) and higher, UV divergences make coefficients

renormalization scheme dependent:

R = 3KQCD

∑

q

Q2
q ,

KQCD = 1 +
αS(µ2)

π
+
∑

n≥2

Cn

(

s

µ2

) (

αS(µ2)

π

)n

� In MS scheme with scale µ =
√
s,

C2(1) =
365

24
− 11ζ(3)− [11− 8ζ(3)]

Nf

12
≃1.986− 0.115Nf

� Coefficient C3 is also known.
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� Scale dependence of C2, C3 . . . fixed by requirement that, order-by-order, series should be

independent of µ. For example

C2

(

s

µ2

)

= C2(1)−
β0

4
log

s

µ2

where β0 = 4πb = 11− 2Nf/3.

� Scale and scheme dependence only

cancels completely when series is

computed to all orders. Scale change at

O(αn
S
) induces changes at O(αn+1

S ).
The more terms are added, the more stable

is prediction with respect to changes in µ.

� Residual scale dependence is an important source of uncertainty in QCD predictions. One can

vary scale over some physically reasonable range, e.g.
√
s/2 < µ < 2

√
s, to try to quantify this

uncertainty. but there is no real substitute for a full higher-order calculation.
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� Shape variables measure some aspect of shape of hadronic final state, e.g. whether it is

pencil-like, planar, spherical etc.

� For dσ/dX to be calculable in PT, shape variable X should be infrared safe, i.e. insensitive to

emission of soft or collinear particles. In particular,X must be invariant under pi → pj + pk
whenever pj and pk are parallel or one of them goes to zero.

� Examples are Thrust and C-parameter:

T = max

∑

i |pi · n|
∑

i |pi|

C =
3

2

∑

i,j |pi| |pj | sin2 θij
(
∑

i |pi|)2

After maximization, unit vector n defines thrust axis.
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� In Born approximation final state is qq̄ and 1− T = C = 0. Non-zero contribution at O(αS)
comes from e+e− → qq̄g. Recall distribution of xi = 2Ei/

√
s:

1

σ

d2σ

dx1dx2
= CF

αS

2π

x21 + x22
(1− x1)(1− x2)

.

� Distribution of shape variableX is obtained by integrating over x1 and x2 with constraint

δ(X − fX(x1, x2, x3 = 2− x1 − x2)), i.e. along contour of constantX in (x1, x2)-plane.

� For thrust, fT = max{x1, x2, x3} and we find

1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2 − 3T + 2)

T (1− T )
log

(

2T − 1

1− T

)

−3(3T − 2)(2− T )

(1− T )

]

.
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� Even in high-energy, short-distance regime, long-distance aspects of QCD cannot be ignored.

Soft or collinear gluon emission gives infrared divergences in PT. Light quarks (mq ≪ Λ) also

lead to divergences in the limit mq → 0 (mass singularities).

� Spacelike branching: gluon splitting on incoming line (a)

p2b = −2EaEc(1− cos θ) ≤ 0 .

Propagator factor 1/p2b diverges as Ec → 0 (soft singularity) or θ → 0 (collinear or mass

singularity).
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If a and b are quarks, inverse propagator factor is

p2b −m2
q = −2EaEc(1− va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence as va → 1,

i.e. when quark mass is negligible. If emitted parton c is a quark, vertex factor cancels Ec → 0
divergence.

� Timelike branching: gluon splitting on outgoing line (b)

p2a = 2EbEc(1− cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb orEc → 0) or when opening angle θ → 0. If b
and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again, soft quark divergences

cancelled by vertex factor.

� Similar infrared divergences in loop diagrams, associated with soft and/or collinear configurations

of virtual partons within region of integration of loop momenta.

� Infrared divergences indicate dependence on long-distance aspects of QCD not correctly

described by PT. Divergent (or enhanced) propagators imply propagation of partons over long

distances. When distance becomes comparable with hadron size ∼ 1 fm, quasi-free partons of

perturbative calculation are confined/hadronized non-perturbatively, and apparent divergences

disappear.
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� Can still use PT to perform calculations, provided we limit ourselves to two classes of observables:

� Infrared safe quantities, i.e. those insensitive to soft or collinear branching. Infrared

divergences in PT calculation either cancel between real and virtual contributions or are

removed by kinematic factors. Such quantities are determined primarily by hard,

short-distance physics; long-distance effects give power corrections, suppressed by inverse

powers of a large momentum scale.

� Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed into an overall

non-perturbative factor, to be determined experimentally.

� In either case, infrared divergences must be regularized during PT calculation, even though they

cancel or factorize in the end.

� Gluon mass regularization: introduce finite gluon mass, set to zero at end of calculation.

However, as we saw, gluon mass breaks gauge invariance.

� Dimensional regularization: analogous to that used for ultraviolet divergences, except we

must increase dimension of space-time, ǫ = 2− D
2
< 0. Divergences are replaced by

powers of 1/ǫ.
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� QCD is an SU(3) gauge theory of quarks (3 colours) and gluons (8 colours,self interacting)

� The Electroweak SM is based on SU(2)⊗ U(1) gauge theory.

� Renormalization of dimensionless observables depending on a single large scale implies that the

scale dependence enters through the running coupling.

� Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.

� α(MZ) ≃ 0.118 in five flavour MS-renormalization scheme.

� Perturbative QCD has infrared singularities due to collinear or soft parton emission. We can

calculate infra-red safe or factorizable quantities in perturbation theory.
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� QCD and Collider Physics

(Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology)

by R. K. Ellis, W.J. Stirling and B.R. Webber

for errata, see

http://www.hep.phy.cam.ac.uk/theory/webber/QCDupdates.html
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