SLAC Summer Institute 2016

"New Horizons on the Energy Frontier"

Tracking Detectors (Lecture 1)

Norbert Wermes University of Bonn

Outline

<u>Lecture 1</u>

- Requirements on tracking detectors
- Gas/semiconductor detectors in comparison
- □ How the signal develops
 - Shockley-Ramo theorem
 - Weighting fields in various configurations
- Diffusion and drift (short)
- □ Space resolution w/ patterned electrodes
- Gas-filled detectors
 - Gas amplification (streamers and sparks)
 - The drift chamber
 - The "Time Projection" chamber
 - What is different at LHC experiments?

Lecture 2

- □ How to make a semiconductor detector?
- **\Box** The nuisance of δ-electrons
- Radiation damage: NIEL and IEL (TID)
- What to do for High-Lumi LHC?
- Alternatives to "Hybrid" Pixels
 - DEPFET Pixels
 - DMAPS: Monolithic CMOS Pixels
- □ 4D with LGADs?

Tasks of Tracking detectors

provide precise space points or space point clusters (vectors) originating from ionizing charged particles

allowing

- particle track finding from patterns of measured hits (at large background & pile-up)
- momentum (B-field) and angle measurement
- measurement of primary and secondary vertices
- multi-track separation and vertex-ID in the core of (boosted) jets
- measurement of specific ionization for low momentum tracks (not this talk)
- keep the material influencing the paths of particles to a minimum to avoid scattering and secondary interactions

see also lecture by Christian Weiser

Track models

- In a homogeneous B-field the motion of a charged particle is a helix.
- The projection can be parametrized by a linearized circle

$$y = y_0 + \sqrt{R^2 - (x - x_0)^2}$$
$$\Rightarrow y \approx a + bx + \frac{1}{2}cx^2$$

This track model is fit (χ^2) to measured space points

$$S = \sum_{i=1}^{N} \sum_{j=1}^{N} (\xi_i^{meas} - \xi_i^{fit}) V_{y,ij}^{-1} (\xi_j^{meas} - \xi_j^{fit}) = \sum_{i=1}^{N} \frac{(\xi_i^{mess} - \xi_i^{fit}(\theta))^2}{\sigma_i^2}$$

Х

if V is diagonal

Track models

curvature

 $3N^2 - 7$

720

 $\frac{30N}{(N-2)(N+2)}$

2)N(N+2)

slope

 $\sigma_a^2 = \sigma$

 $\sigma_{ab} = \sigma_{bc} = 0$

 $\sigma_{ac} =$

y

$$\Rightarrow y \approx a + bx + \frac{1}{2}cx^2$$

- yielding the parameters a, b, and c and their errors
 here N equidistant measurements
- ... and the errors on the track coordinates y at a given x

$$\sigma_y^2 = \sum_{i=1}^m \sum_{j=1}^m \frac{\partial y}{\partial \theta_i} \frac{\partial y}{\partial \theta_j} V_{\theta,ij}$$

e.g. : the impact parameter resolution

Track models

universität**bonn**

For N <u>equidistant</u> points we get for the curvature:

$$\sigma_c = \frac{\sigma_{\text{meas}}}{L^2} \sqrt{\frac{720(N-1)^3}{(N-2)N(N+1)(N+2)}} \approx \frac{\sigma_{\text{meas}}}{L^2} \sqrt{\frac{720(N-1)}{(N+4)}}$$

and for the transverse momentum

$$p_T = |q| B R = \frac{q B}{\kappa}$$

$$\begin{pmatrix} \sigma_{p_T} \\ p_T \end{pmatrix}_{\text{meas}} = \frac{p_T}{0.3|z|} \frac{\sigma_{\text{meas}}}{L^2 B} \sqrt{\frac{720}{N+4}}$$

$$[p_T] = \text{GeV/c}, \ [L] = \text{m}, \ [B] = \text{T}$$

$$\begin{array}{c} \text{Gluckstern} \\ \text{formula} \\ \text{NIM 24 (1963) 382} \end{array}$$

material contributes via multiple scattering

$$\left(\frac{\sigma_{p_T}}{p_T}\right)_{\rm MS} = \frac{0.054}{LB\beta} \sqrt{\frac{L/\sin\theta}{X_0}}$$

Total momentum resolution

Increasing N also improves the resolution, but only as $1/\sqrt{N}$

N. Wermes, SSI 2016, Tracking Detectors

PRO not mentioned in this context: high rate capability 7

- small $X_0 =>$ large MS

- small L

Most tracking detectors are ionization detectors

- Primary Ionization
- Secondary Ionization (due to δ-electrons)
- N. Wermes, SSI 2016, Tracking Detectors

Ionisation energy loss

$$-\left\langle \frac{dE}{dx}\right\rangle = K \frac{Z}{A} \rho \frac{z^2}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} - \frac{C(\beta\gamma, I)}{Z}\right]$$

- does almost NOT depend on material (Z/A $\approx \frac{1}{2}$, ln I)
- proportional to z²
- depends on $\beta \gamma = p/E * E/m = p/m$ of projectile
- same curve for all z=1 particles when plotted as a function of βγ
- minimum at βγ=p/m = 3-3.5 (v=96%c)
- height of the plateau ~ 1.1 (solid) 1.6 (gas) x minimum
- get different curves when plot against p (momentum) -> possibility for particle identification

For trackers: gas-filled and semiconductor detectors

++	material	-
+ Iow	N _{meas} cost	 high
 100 μm	rate/speed resolution	++ 10 μm

26 eV needed (Ar) per e/ion pair 94 e/ion pairs per cm

intrinsic amplification typ. 10⁵ typ. noise: > 3000 e- (ENC)

3.65 eV (Si) needed per e/h pair **~10⁶ e/h pairs per cm** (20 000/250µm) no intrinsic amplification typ. noise: 100 e- (pixels) to 1000 e- (strips)

How the signal develops

by "electrostatic induction"

Signal generation in an electrode configuration

how does a moving charge couple to an electrode ?

• respect Gauss' law and find

Shockley- Ramo theorem (Shockley J Appl.Phys 1938, Ramo 1939)

weighting field

determines how charge movement couples to a specific electrode

$$i_S = -\frac{dQ}{dt} = q \, \vec{E}_w \, \vec{v}$$

$$dQ = q\vec{\nabla} \Phi_W d\vec{r}$$

induction (weighting) potential

determines how charge movement couples to a specific electrode

Ramo Theorem in a many electrode configuration

Recipe: To compute the weighting field of a readout electrode i, set voltage of electrode i to 1 and all other electrodes to 0.

N. Wermes, SSI 2016, Tracking Detectors

Normal Field and Weighting Field

A detector is a current source

delivers a current pulse independent of the load

one can convert current into charge (integral) or voltage (via R or C)

N. Wermes, SSI 2016, Tracking Detectors

A parallel plate detector (capacitor)

Signal in a Silicon detector (= parallel plate w/ space charge)

- E-field not constant
- velocity not constant
- weighting field still the same

$$\vec{E}_w = -\frac{1}{d}\vec{e}_x$$

$$\begin{split} \vec{E}(x) &= -\left[\frac{2V_{dep}}{d^2}(d-x) + \frac{V-V_{dep}}{d}\right]\vec{e}_x = -\left[\frac{V+V_{dep}}{d} - \frac{2V_{dep}}{d^2}x\right]\vec{e}_x \\ v_e &= -\mu_e E(x) = +\mu_e (a-bx) = \dot{x}_e \\ v_h &= +\mu_h E(x) = -\mu_h (a-bx) = \dot{x}_h \\ \hline s(t) &= i_S^e(t) + i_S^h(t) \\ &= -\frac{e}{d}\left(\frac{2V_{dep}}{d^2}x_0 - \frac{V+V_{dep}}{d}\right) \\ &\times \left\{\mu_e \exp\left(-2\mu_e \frac{V_{dep}}{d^2}t\right)\Theta(T^- - t) - \mu_h \exp\left(+2\mu_h \frac{V_{dep}}{d^2}t\right)\Theta(T^+ - t)\right\} \end{split}$$

Current and charge signals

particle

transient current

Current pulse measurements: TCT technique

Note

- movement of both charges create signals on both electrodes.
- on every electrode a total charge of

$$Q_S^{tot} = Q_S^- + Q_S^+ = -Ne$$

is induced.

 if a material the produced charges have very different mobilities (like CdTe) e.g. with μ_h≈ 0, then part of the signal is lost and the signal becomes dependent on where the charge was deposited.

Signal development in a wire chamber

big difference:

electrode (wire) does not "see" (too small) the charge before gas amplification

□ signal (on wire) shape is governed by the (large) ion cloud moving away from the wire to cathode

Avalanche
process:
$$dN = \alpha (E) N ds$$

 $N(x) = N_0 e^{\alpha x}$ with
gas gain $\alpha = \sigma_{ion} n = \frac{1}{\lambda_{ion}}$ $N(x) = N_0 e^{\alpha x}$ $as gas gain$ 1st Townsend coefficient $\frac{N}{N_0} = G = e^{\alpha x}$ 1st Townsend coefficient

Signal development in a wire configuration (1)

- we follow the Shockley-Ramo-recipe: find the weighting field E_w or the weighting potential Φ_w by setting

$$\phi_w(a) = 1, \ \phi_w(b) = 0$$
 (*)

- we know already the shape of $\Phi_{\rm W}$ ~ ln r, since E(r) ~ 1/r
- hence

$$\vec{E}_w(r) = \frac{1}{r} \frac{1}{\ln b/a} \frac{\vec{r}}{r}, \qquad \phi_w(r) = -\frac{\ln r/b}{\ln b/a} \text{ which fulfills (*)}$$

Signal development in a wire configuration (2)

- now use Shockley-Ramo $dQ_S = -qec{E_w}dec{r}$
- we assume that N e/ion-pairs are produced at r = r₀. Note that usually there is avalanche amplification (starting only in the high field region) and the vast majority of charges is produced very close to the wire (r₀ < 10 μm, see previous page)
- then we get immediately

$$Q_{S}^{-} = -(-Ne)\frac{1}{\ln b/a}\int_{r_{0}}^{a}\frac{1}{r}dr = -Ne\frac{\ln r_{0}/a}{\ln b/a}$$
(**)
$$Q_{S}^{+} = -(+Ne)\frac{1}{\ln b/a}\int_{r_{0}}^{b}\frac{1}{r}dr = -Ne\frac{\ln b/r_{0}}{\ln b/a}$$

- and the <u>total</u> charge is $Q_S^{tot} = Q_S^- + Q_S^+ = -Ne$
- however, due to the 1/r dependence of the weighting field the situation is much different from that of a parallel plate detector: the contribution from electrons and ions is not necessarily the same but depends on r₀ (i.e where the avalanche is created) because only there N becomes large enough that the signal is "felt" by the electrode (wire).

N. Wermes, SSI 2016, Tracking Detectors

Signal development in a wire configuration (3)

(b)

with RC filter

N. Wermes, SSI 2016, Tracking Detectors

in wire chambers the (integrated) signal is dominated by the ion contribution. Reason: specific form of the weighting field

using Ramo and r(t) from the 1/r - E-field, we get ...

$$i_S^+(t) = \frac{Ne}{2\ln b/a} \frac{1}{t+t_0^+}$$

ions only

$$q_s(t) = \frac{Q_S(t)}{C_l l} = \frac{Ne}{2\pi\epsilon_0 l} \ln\left(1 + \frac{t}{t_0^+}\right)$$

Summary: Signal formation characteristics in a wire chamber

- \Box electric field is large close to the wire @ r \approx r_{wire}
 - => secondary ionization has a much larger effect on signal than primary ionization
 - => avalanche near wire: $q \rightarrow q \times 10^{4-7}$
- from there (μm's away from wire) the electrons reach the wire fast => very small and fast e⁻ component of Q_{tot}
- ions move slowly away from wire => main component of Q_{tot}(t)
- □ signal <u>only</u> relevant after avalanche ionization \cong quasi only Q⁺(t)
- the term 'charge collection' is more justified in wire chambers than in other ionization detectors (e.g. parallel plate detectors) since most of the signal is created only very close to the wire

N. Wermes, SSI 2016, Tracking Detectors

signals are induced on BOTH (ALL) electrodes => exploit for second coordinate readout

wire chamber with cathode readout

double sided silicon strip detector

Signal generation in a patterned detector (1-dim)

time (s)

V=0

N. Wermes, SSI 2016, Tracking Detectors

universität**bonn**

Concluding ... **consequences** ...

28

- \Box The weighting field reaches also into regions of neighbor pixels \rightarrow induced signals there as well
- □ At the beginning of the charge movement, neighbor pixels "see" almost as much signal as the "hit" pixel → no difference when electronics is (too) fast
- □ consequences for small electrodes is, that most of the charge is induced, when q is <u>near</u> the hit pixel → small pixel effect
- □ when charges drift only a short distance due to
 - $\mu_h \ll \mu_e$ (e.g. for CdTe)
 - trapping (e.g. for pCVD diamond)

peculiar signal patterns may arise (worst case: holes do not move and electrons are trapped after 50 μ m \rightarrow several pixels "fire")

Diffusion and drift of charge cloud on way to electrode

universität**bonn**

Movement in the presence of a magnetic field

- if the electric field E is perpendicular to a magnetic field B then the charges drift on circle segments until they stop in a collision
- on average this results in a deflection of the drift path by an angle called

Lorentz angle

with

 $\omega = qB/m = cyclotron frequency$

 τ = mean collision time

Spatial Resolution in segmented electrode configuration Sniversitätbonn

- binary readout (hit/no hit)
- analog readout (pulse height information)

 $\sigma_x^2 = \frac{1}{a} \int_{-a/2}^{a/2} \Delta_x^2 \, d(\Delta_x) = \frac{a^2}{12}$

 $v = \int_{x_1}^{x_2} x^2 f(x) dx$

 signal (charge) distributed on more than one electrode

Spatial Resolution in segmented electrode configuration Sniversitätbonn

Arbitrary detector response ("data driven method")

typical for semiconductor detectors and patterned gaseous detectors channels have different gains

2 electrodes have signal over

 $N_{electrodes}$ = 2-3, S/N ~ 10

$$S_L(x) = Q \eta(x)$$

$$S_R(x) = Q - S_L(x) = Q(1 - \eta(x))$$

η = response function, indep. of Qcan be determined from signals themselves

$$\eta = \frac{S_L}{S_L + S_R}$$

- assume a constant hit probability density
- => can build inverse of η -function (η -> x)
- pick best estimate of position from a <u>measured</u> distribution
- algorithm can also be extended to three electrode situations

$$x_{rec} = \eta^{-1} \left(\frac{S_L}{S_L + S_R} \right) = \frac{a}{N} \int_0^{\eta} \frac{dN}{d\eta'} d\eta'$$

Arbitrary detector response

TPC

Length: 4 m; R = 185 cm; 159 measurements per track $[\sigma_{rp} = 135 \ \mu m, \sigma_z = 80 \ mm]$ CDF central chamber

Gas-filled detectors

ATLAS

Muon Wheel

Multi Wire Proportional Chamber

- mother of all wire chambers (1960ies)
- break through in tracking, because tracks became electronically recordable
- Nobel Prize 1992

36

region of limited proportionality → multi wire chamber operation in saturation region (G ~10⁵ - 10⁷)

- operation point: gain > $10^6 \rightarrow$ strong secondary ionization
- <u>space charge effects</u> (stationary ion cloud decreases the electric field at the anode) destroy 1/r shape near wire
- saturation of signal sets in this is sometimes wanted, when the number of particles is to be determined by the total signal height; e.g. when slow $(1/\beta^2 !)$ protons shall give the same signal height as m.i.p.s

Saturation -> Avalanche -> Streamer -> Spark

- => saturated avalanche -> streamer -> discharge (= glow -> corona -> spark) occur
- streamer/discharge accompanied by photon emission (can be visible) and needs to be quenched (by HV-lowering, pulsed HV, space charge screening, etc.) when used as detectors rather than demonstration objects (spark ch.)
- very fast (10⁶ m/s) governed by photon emission, 10x faster than avalanche dev. (governed by v_{drift})
- → when streamer reaches electrode => spark/discharge => avoid in detectors (→limited streamer mode)
- □ (limited) streamer operation modes found today in straw tube geometries or RPCs

universitätbonn

N. Wermes, SSI 2016, Tracking Detectors

cathode readout (see page 24) or crossed wire planes

Kolanoski, Wermes 2015

90° "stereo" arrangement best for resolution but n² "ghost" hits ±30° "stereo" arrangement (3 layers) small angles often easier due to wire fixations or R/O no ghosts in this example

The Driftchamber (usually operated in proportional mode) ersitätbonn

MWPC limited for very narrow wire spacing due to electrostatic repulsion: typ.: s > 1mm for \$\low\$ 10 µm, l = 25 cm
 better resolution obtained by measurement of arrival time of the electron cloud (measured by TDC or similar)
 need additional "potential wire" to avoid low field regions
 space point to drift-time relation is usually field-strength dependent and thus is non linear (-> calibration)

low field region

cathode plane

Long drift cells: the Jet Chamber

- + many hits per particle track (~ 135 µm res.)
- + but still only modest number of wires needed in total
- + homogeous E-field → easy space point to drift-time relation
- ± large drift distances
- get 3D space point by charge division on wire
- multi-hit electronics \rightarrow good 2-track resolution

0

(a)

0

0

0

0

"staggering" of anode wires to resolve the left-right ambiguity

z-coordinate measurement

N. Wermes, SSI 2016, Tracking Detectors

42

Time Projection Chamber

universität**bonn**

- □ full 3-D reconstruction (voxels): xy from wire/pad geometry at the end flanges; z from drift time
- □ 3D track information recorded -> good momentum resolution
- □ also dE/dx measurement easy -> particle ID (not topic of this lecture)
- □ large field cage necessary
- typical resolutions:

in $r\phi = 150-400 \ \mu m$ in $z \approx mm$

- challenges
 - long drift time -> limited rate capability
 - large volume -> geometrical precision
 - large voltages -> potential discharges

ALICE TPC

Parameter/Experiment	PEP4 [612]	ALEPH [100]	ALICE [72]
Volume (m ³)	5	20	26
$\sigma_{r\phi}~(\mu m)$	130–200	170-450	800–1100
σ_z (µm)	160–260	500-1700	1100–1250
Zweispurtrennung (mm), T/L	20	15	13/30
$\sigma_p/p^2~({ m GeV^{-1}})~(p~{ m grob})$	0.0065	0.0012	0.022

Developments accomplished in the context of high rate applications (i.e. LHC)

What is different (to before) for LHC pp experiments?

D particle rates ($\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$)

note: heavy ions: $\mathcal{L} = 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$

- bunch crossing every 25 ns
- $N_{trk} = \sigma \mathcal{L} = 100 \text{ mb} \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \times 120 \approx 10^{11} \text{ tracks/s in } 4\pi$ this is 10^6 times the track rate at LEP
- @ r = 5cm => 9.5 tracks/cm²/25 ns but only 10⁻⁴ per pixel (100x100 μm²)

□ radiation level (@ r = 5cm, per detector lifetime)

- ionizing dose = energy/mass (J/kg) = 100 Mrad
- non ionizing fluence (breaks the lattice) = 10¹⁵ particles per cm²
- affects ageing on wires, electronics, ...

way out

- high granularity, small cells
- high timing precision << 25 ns</p>
- solid state detectors (-> lecture 3)
 - micro structuring => highest granularity
 - but: sensitive to radiation (different to gaseous detectors at moderate gas gains)

N. Wermes, SSI 2016, Tracking Detectors

Straw tubes

- diameter = 4 mm
- ~36 hits along a barrel track
 - can better cope with high rates due to individual units and short drift distances
- N. Wermes, SSI 2016, Tracking Detectors

- gas: Xe CO₂ O₂ (70%:27%:3%)
- serves as tracker and e- ID at the same time

MPGCs (Micro Pattern Gas Detectors)

GEM

advances in micro structuring also entered clever chamber designs
 goals:

- thin gap
- high rate capability (100 x MWPC)
- high resolution

today's standard: Triple GEMs (stand alone detectors)

N. Wermes, SSI 2016, Tracking Detectors

49

MICROMEGAS (MICRO MEsch GASeous Structure)

- separation of drift region and (short) amplification region by a micro grid
- □ R/O of induced charges by patterned electrode
- fast induced signals
- need precise grid alignment
- new development: INGRID structure obtained by "post processing" of grid directly on R/O chip

INGRID structure

target high timing precision (trigger and timing chambers, e.g. ATLAS Muon Spectrometer)

use high ohmic	$(10^8-10^{12} \Omega \text{ cm}) \text{ plates}$
(glass, Bakelite)	with small gap (2mm)

- operation (~10 kV) in avalanche (shorter quench times) or (~100kV/cm) streamer mode (larger and faster signals)
- induced signals reach through to patterned electrodes
- □ large signals: <100pC streamer, <10pC avalanche
- gas with high ionisation density and high quenching efficiency needed:

e.g. 94.7% C₂H₂F₄, 5% i – C₄H₁₀, 0.3% SF₆

Trigger-RPC avalanche mode	Timing-RPC streamer mode
E=50 kV/cm	E = 100 kV/cm
$lpha$ =13.3/mm η = 3.5/mm	$lpha$ =123/mm η = 10.5/mm
$v_{\scriptscriptstyle D}{=}140~\mu{ m m/ns}~~{ m d}=2~{ m mm}$	$v_D = 210 \ \mu m/ns \ d = 0.3 \ mm$
$\sigma_t = 1 \text{ ns}$	$\sigma_t = 50 \text{ ps}$
$\epsilon = 98\%$	ϵ =75%

End of Lecture 1